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Abstract

Identifying and dating financial bubbles in real time is in the forefront of current 
empirical research. Their accuracy provides very useful “warning alerts” to central bankers and 
fiscal regulators with real time data. But the complexity of their nonlinear structure and the 
inherent sudden break mechanisms makes the econometric testing challenging, to say the least. 
The new recursive flexible window methodology provided by Phillips, Shi and Yu (2015) gives 
consistent results and delivers significant power gains when multiple bubbles occur. It 
successfully identifies the well-known historical episodes of exuberance and collapse. As a first 
step here, we extend their data set of the S&P 500 stock market from (January 1871 to December 
2016. The existence of (more) bubbles in some and not all these data sets might give us some 
indication of where, in an economy, bubbles are more likely to occur. We believe that this 
information will be of interest to researchers in this field.

1. Introduction

History is replete with incidents of financial crisis, which ex-post become a wakeup call 
for policymakers and the people.  Again and again it was stated by experts that the present crisis 
was preceded by “asset market bubbles” and / or “excessive credit expansion.”  But the fact of 
the matter remains that we do not have good quantitative markers which can ex-ante indicate the 
genesis of a momentum being built in the asset / credit markets which may lead to a catastrophe 
down the line.  If we had quantitative observable “warning signs” many an economic debacle can 
be avoided.  Thus after the most recent global financial crisis of 2007-2009, the main thrust in 
the Basel III accord was to emphasize on more close and determinate market surveillance, so that 
bankers and policy makers could be forewarned of a possible impending implosion.

But as Cooper (2008) said “Economists have taught us that it is unwise and unnecessary 
to combat asset price bubbles and excessive credit creation.  Even if we were unwise enough to 
prick an asset price bubble, we are told it is impossible to see the bubble, while it is in its 
inflationary phase.”   Thus we have to accept that there is no practical way to identify the genesis 
of a crisis.  Thus the task at hand is to try to identify possible quantitative markers from the data, 
that something is “awry” and that a speculative bubble is probably taking shape.  It will worsen if 
measures to “quell” it is not taken, now.  That is where the Phillips, Shi and Yu (PSY henceforth, 
2014b) research comes into effect. This paper offers the first powerful and credible “quantitative 
metric” to detect exuberance in financial data, right where it is originating.  Once detected, the 
counteractive policies can be promulgated and implemented.  
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Looking at long term S&P 500 data from 1871-2010 (about 140 years), the authors 
propose a recursive algorithm, which can actually diagnose and identify ex-ante the signs of 
“turbulence within the force” if you will.  This procedure helps us pinpoint the start of the 
problem, and can thus help us monitor the markets.  Since we know that history has proven that 
it has a bad habit of repeating itself, this early warning diagnostic tool will come in handy, in 
helping make / alter policies to avert the impending crisis.  The best part of this test is that it can 
be implemented on current data in real time and try to detect the “fault lines.”  

In the economics literature we have multiple tests to detect ex-post the crisis, and then 
explain it.  Gurkaynak (2008) is a good review of this documentation.  But there was no test to 
ex-ante identify the origination of a bubble which is in the making.  There were no econometric 
detectors of a future market crisis. Phillips, Wu and Yu (PWY henceforth, 2011) presented a 
recursive method to detect exuberance in asset prices during an inflationary phase.  The 
advantage here being that the early detection (ex-ante acknowledgement) can help banks / 
regulators / policy makers to address the problem in its nascent state.   PWY was very effective 
in the early detection of bubble markers, provided there was a single bubble / turbulence in the 
data sample.  They proved the effectiveness of the test using NASDAQ (PWY, 2011) and the US 
housing bubble (PY, 2011).  This was an incredible contribution to the economics research 
literature. 

But then came the question of “economic reality” which showed that there usually were 
multiple recurring financial crises, over long periods.  Ahamed (2009) gave us evidence of 60 
different financial crises, in the 17th century alone.  Thus the next step in the evolution of these 
detection tests was to create the one that could identify multiple bubbles in the same sample 
period.  A test to clearly make periodic collapsing and recovering economic data was simply not 
there. This recursive identification is extremely complex compared to identifying a single 
bubble.  The main problem is computationally handling the non-linear structure of multiple 
breaks / bubbles in the data.  With the presence of multiple break points in the data, the 
discriminatory power of the detectors go down dramatically and hence the upswings and 
downswings are not decipherable in the same data stream.  Thus the challenge is twofold:

1) Come up with a statistical metric which can detect multiple factual fractures in the non-linear 
data stream
2) Be powerful and effective enough so as not to have a low false negative detection tolerance 
(to avoid unnecessary policies) and also a high positive detection tolerance (so as to ensure good 
and early effective policy application.) 

This paper presents a recursive econometric technique to detect / test / date financial 
bubbles in the same sample data, and separate them when multiple bubbles are present.  Here the 
authors extend on their (PWY, 2011) methodology, which is based on a sequence of forward 
recursive right tailed ADF unit root tests, using the Sup ADF (designated SADF) measure.  This 
process allows for a dating strategy to identify the origination and termination dates of a specific 
bubble.  This is achieved by using “backward regression techniques.”  In case of a single bubble, 
the PWY test is consistent, as shown in PY 2009.  This detection algorithm is better able to date 
the ups and downs of financial data, as opposed to the CHOW tests, CUSUM tests etc. as 
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evidenced by Homm and Breitung (2012).  Its added strength is that it can detect exuberance in 
the data arising from different sources, as would happen in real life. 

But PWY is consistent in detecting single bubbles or exuberance points in the sample 
data.  What if there are multiple bubbles, originating and decaying in sequence over time.  PWY 
is not proven to be consistent in such cases.  It cannot be confidently used in examining long 
term market data where exuberance and collapse are evident ex-post.

This paper presents an extension of the SADF tests, in form of a generalized SADF called 
the GSADF method.  It includes a recursive backward regression technique, to time identify the 
origin and collapse of bubbles.  It is a right tailed ADF test, but has a flexible window width to 
separate one bubble from the next, to the next sequentially, since their lengths are bound to be 
different.  In structure and logic, it is analogous to the left-sided recursive unit root test of 
Leybourne, Kim and Taylor (2007), this being a right-sided double recursive unit root test.

It’s an ex-ante procedure to detect different start and end points of bubbles in real time 
data, i.e., identify and separate multiple bubble episodes over the same sample set.  This test has 
been proven to consistently give good results, when multiple bubbles are present.  Thus it can 
credibly be applied to analyzing long term historical data.  Along with the ex-ante dating 
algorithm and the GSADF test, the authors develop a modified PWY algorithm, which 
reinitializes the test sequentially, after the detection of each bubble.  This sequential test works in 
deciphering multiple bubbles from explosion to collapse, and separate them over time.

It is applied to the S&P 500 stock market data from January 1871- December 2010.  It 
has been able to identify all the historically documented bubble episodes, like the 1929 crash, 
1954 boom, 1987 black Monday and the latest dot-com bubble.  Section 2 describes the reduced 
form model, the new rolling window recursive test and its limit theory.  Section 3 elaborates the 
data stamping strategies, to separate single, double and multiple bubbles in the same sample 
period.  Section 4 is simulation results of the size, power and performance of the dating strategy 
tests.  In section 5, they apply the PWY test, the sequential PWY test and the CUSUM test to the 
same S&P data.  Section 6 concludes.

PSY (2015) develops the limit theories and consistency properties in case of single and 
multiple bubbles.  PSY (2015, b) is a supplement describing the robustness checks of this testing 
procedure.

2. Rolling window test for bubbles

It originates with the standard asset pricing model:

=  ( ) ( + ) + Bt (1)

where 
Pt = after dividend price of an asset
Dt = payoff (dividend) from the asset
rf = risk free interest rate
Ut = unobservable fundamentals
Bt = bubble component
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Here =  (market fundamentals) and Bt satisfies the sub martingale property
= ( ) = 1 + (2)

This equation sets up the alternative scenarios for the presence / absence of bubbles in the 
data.  For example: If there are no bubbles, the Bt =0, then the degree of non-stationarity [ I(0) or 
I(1)] of asset prices is controlled by asset payoffs or dividends (Dt) and the unobservable 
economic / market fundamentals.  The advantage of the reduced form model is that it pretty 
much encompasses all standard formulations as intrinsic bubbles (Froot and Obstfeld, 1991), 
herd behavior (Abreu and Brunnermeier, 2003), time varying discounting (Phillips and Yu, 
2011)1.

A possible outcome would be like this: If Dt is an I(1) process, the Ut has to be either I(0) 
or I(1) and asset prices can at the most be a I(1) process. But based on eq. (2), if there are 
bubbles, then asset prices will be explosive.  Thus when the fundamentals are I(1) and Dt is first 
difference stationary, we can infer bubbles if asset prices show evidence of explosive behavior. 
Eq (1) is one way to include a bubble variable in the standard asset pricing model, but the jury is 
still out on this. 2, 3

According to Phillips and Magdalinos (2007), explosive behavior in asset prices is a 
primary indicator of market exuberance, which can be identified in empirical tests using the 
“recursive testing procedure” like the right side unit root test of PWY.  This recursive procedure 
starts with a martingale null (with drift to capture long historical trends in asset data.)  The model 
specification is: 

= + + (3)

where €t is iid (0, 2

deterministic trend, dt/Tn.  Here there are three possibilities:
1) If n>0, the drift will be small compared to the linear trend.
2) If n>1/2, the drift is small relative to the martingale
3) If n=1/2, the output behaves like a Brownian motion, which is evident in many financial time 
series data.

The researcher needs to be careful and exercise caution because the emphasis here is on 
the alternative hypothesis, because departures from market fundamentals are the markers of 
interest.  But as with all types of model specifications, we know that they are sensitive to 
intercepts, trends and trend breaks etc. as described in PSY (2014a). Eq. 3 is tested for 
exuberance using the rolling window ADF approach or the recursive approach of the authors.  
The basic logic is that if the rolling window regression starts from the r1

th fraction and ends with
the r2

th fraction (from sample size T), then r2 = r1+rw, where rw is the size of the window. This 
model is: 

= , + ,  + ,  + (4)  

where k is the lag length, and is iid, with (0, 2
r1,r2).  The basic form is reformulated to 
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include the presence of “multiple bubbles” to separate the market switching time periods from 
explosion to contraction, and again explosion sequentially. They use the Sup ADF test called 
SADF.  It is a recursive / repeated estimation procedure with window size rw., where rw goes 
from r0 (smallest sample window fraction) to r1 (largest sample window fraction), and sample 
end point r2 = rw, going from 0 to 1.  The SADF statistic i: 4

SADF (r0) n= sup r2 [r0,1] ADFr2
0

Rolling window GSADF test

The ADF regression is run on eq. 4, recursively, but continuously on sub-samples of the 
data based on window width chosen according to r0, r1, r2……rw.  The subsamples chosen here 
are more extensive than the SADF test.  The difference here is that we allow the window width 
to change within the feasible range where rw = r2 – r1. The GSADF statistic is: 
GSADF (r0) = sup r2 [r0, 1] {ADFr2

r1}

r1 [0, r2-r0] (5)

The GSADF statistic as given in eq. (5) 5.  Here we see that the limit distribution of the 
GSADF holds (is identical), but with the intercept and the assumption of a random walk 
structure, we have no drift or small drift.  The GSADF’s asymptotic distribution depends on the 
“smallest window width size r0.”  Care needs to be exercised on choosing the width of r0.  It 
depends on the number of observations in the sample.  

Case (1): If T is small, r0 has to be made large enough to ensure the inclusion of an adequate 
number of observations.
Case (2): If T is large, r0 should be set small, so as to be able to include different “explosive” 
burst in the data.  The authors run simulations and derive the critical values (CV’s).  The 
conclusions are:

1) As r0 decreases, CV’s of the test statistic increases

2) For r0 given, the CV’s are constant in finite samples.    

3) GSADF statistic CV’s are larger than the SADF statistic, which is larger than the ADF 
statistic, and its concentration also increases, increasing confidence in the test outcomes.  The 
backward SADF statistic is the sup value of the ADF sequence run over this interval.  

BSADF r2 (r0) = sup r1 [0, r2-r0] {ADF r2r1}

We see here that the ADF test is a special case of the backward sup ADF (BSADF) when r1=0.
The empirical steps are:

1) Determine ADFr2 and the sup ADF within the feasible range of r2 (from r0 to r1.)  The 
origination of the bubble is dated.  This procedure imposes the condition that the bubble marker 
is the existence of a critical value greater than LT = Log (T).  This separates the short and 
temporary market blips (which happen all the time in real life) from actual exuberance.  Dating is 



Swarna D. Dutt and Dipak Ghosh

20 
 

done using the formula:6,7,8

^ = [ , ]{ > } (6)

And
^ =

[ ^ ( )
,

]
: < } (7)

where cv T
r2 is the 100(1- T) % critical value of the ADF statistic based on [Tr2] observations.  

Here T 0, as T

3. Data stamping strategies

The idea is to identify bubbles in real time data and then look for the “markers” 
identifying those bubbles / episodes of market exuberance.  The problem is that the standard 
ADF test can identify extreme observations, as r = [Tr], but cannot separate between a bubble 
phase observation from one which is part of a natural growth trajectory.  Market growth is not an 
indication of bubbles.  Thus ADF tests may result in finding “pseudo bubble detection.” Making 
this distinction is the major contribution of this test.  The authors run backward sup ADF or 
backward SADF tests, to improve the chances of deciphering a bubble from a growth trajectory.  
The recursive test means running SADF backwards on the sample, increasing the sample 
sequence using a fixed sample r2, but varying the initial point from 0 to (r2-r0).  This gives the 
SADF statistic:

{ADF r2
r1} 0, r2 -0

Bubbles are inferred from the backward SADF statistic or the BSADF r2(r0).  The origin 
of the bubbles, the date and timing is the first observation whose BSADF statistic exceeds the 
critical value of the BSADF.  The bubble ending date / time frame is the first observation whose 
BSADF is below the BSADF critical value.  The intermediary time frame is the duration of the 
bubble.  The origination / termination dates are calculated thus:

^ = [ , ]{ : ( ) > (8)
^ = [

^ ( )
,

{ : ( ) > (9)

where scv T
r2 is the 100(1- T)% critical value of the sup ADF statistic, based on [Tr2]

observations.  T goes to zero, as the sample size approaches infinity.  The distinction between 
the SADF and the GSADF (backward sup ADF) tests, both run over r2 [r0,1] is given by the 
statistic as:

SADF (r0) = supr2 [r0,1] {ADFr2}

And

GSADF (r0) = supr2 [r0,1] {BSADFr2(r0)}
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4. Simulations

Simulations were performed to examine the credibility of the PWY, sequential PWY, 
CUSUM and the GSADF test, in terms of size and power, but most importantly their capability 
to identify multiple bubble episodes.  The basic data generating process is given by:  

= + + (10)

the PWY model.  Simulations using the same data set, same number of observations / 
replications show that the size distortion of SADF > GSADF.  The next question is the effect of 
the lag selection length.  Both SADF and the GSADF have size distortion weakness. But its 
magnitude is small, when we use a fixed lag length in recursive tests.  But GSADF has smaller 
distortion than SADF and thus has a leg up on the latter in lowering the probability of “false 
detection.”  The authors recommend the fixed lag length use with the GSADF test for multiple 
bubbles.  They find that the SADF test has an inherent weakness, evidenced again and again.  It 
could not identify bubbles when the full sample was used, but was able to do so when the sample 
was truncated.  But the recursive application of the GSADF test was able to identify multiple 
bubbles, without having to arbitrarily truncate / segment / re-select sample starting points.  This 
is a major advantage of GSADF over the SADF procedure.  Moreover, the results show that the 
bubble identification power of the GSADF test increases as the sample size increases.  

5. Empirical Applications

We started by extending the Phillips, Shi and Yu (2015) dataset till December 2016, i.e., 
it extends from January 1871 to December 2016, for a total of 1752 observations. This updated 
data set is available on Robert Shiller’s website. The data used is the real S&P 500 stock price 
index, and the real S&P 500 stock price index dividend.  We then conduct the SADF and the 
GSADF tests on the stock price dividend ratio (which reflects asset prices in relation to 
economic / market fundamentals) according to the basic model in eq. (1).  The results are given 
in table 1. Also given are the critical values of the two tests obtained from 2000 replications of 
1752 observations.

Table 1

Test Statistic Finite Sample Critical Values

90% 95% 99%

SADF 7.6167682 1.31375 1.59540 2.05789

GSADF 7.8896859 2.1814 2.4321 2.9317

Both tests find evidence of bubbles or explosive sub-periods over the long-term data (test 
statics exceed the critical values).  We then conduct a bubble monitoring exercise for the S&P 
500 stock market using the SADF test and its critical value in Figure 1. The darker line is the 
critical values and the lighter line represents the SADF test statistics. The existence of a bubble, 
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test statistic greater than the critical value, is evident in the late 19th century, and around the later 
1990s (the technology bubble). It also appears to exist around 1929 (the stock market crash). The 
housing bubble of 2006-07 does not seem to show up in the data.

6. Conclusion

The new test, the GSADF procedure is a recursive test, able to detect multiple bubbles.  
It’s a rolling window, right sided ADF unit root test, with a double sup-window selection 
criterion.  The SADF test is good, but it cannot credibly detect multiple bubbles over the same 
sample data set.  The GSADF test overcomes this weakness and has significant discriminatory 
power in detecting multiple bubbles.  It makes it very relevant in studying the “time trajectory” 
of long historical data sets. We have an indication for multiple bubbles in the extended data set.
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Figure 1
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Notes
1. See Shi (2011) for an overview of this literature.
2. Cochrane (2005) debates the rationale of including “bubble components” in an asset pricing 
model, while Cooper (2008) expresses bewilderment at the literatures attempt to rationalize the 
well accepted NASDAQ bubble, as an accurate reflection of the changing market times and 
environment.
3. Interestingly, the experts agree more on the presence of market exuberance leading to panics, 
either rationally or irrationally.  It’s based on changing economic fundamentals, arising from 
behavior alterations of market players, or due to changing discount rates over time etc. 
4. Then there is the Markov-switching test of Hall, et.al (1999), to detect explosive behavior in 
the data sample, but it is open to suspicion since Shi (2013) found it to be susceptible to “false 
detection of explosiveness.”  Also, according to Funke et.al. (1994) and van Norden and 
Vigfusson (1998), general filtering algorithms cannot differentiate between spurious 
explosiveness (the marker being high variance) as opposed to generic explosive behavior.  The 
general approach of SADF is also used by Busetti and Taylor (2004) and Kim (2000) among 
others, to study “market bubbles” but the simulation study done by Homm and Breitung (2012) 
finds the PWY (SADF) test to be the most powerful metric in detecting multiple bubbles.
5. Eq. (5), Theorem 1, from PSY (2014b)
6. The data process before the origination of the bubble is assumed to be a random walk for 
convenience, and it is the usual practice, but not necessary for the asymptotic properties to hold. 
7. The authors have proven the consistency of (r^

e , r^
f) in Phillips and Yu (2009). 

8. This sequential procedure (for proper and credible application) requires a long set of 
observations, the longer the better, in order to re-initialize the test process after a bubble.
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