X-Ray Crystal Structures of Metal Thiolates

John Tidwell, Chelsea Iluno Clinton D. Bryan, Danny G. McGuire Cameron University, Lawton, Ok, 73505, United States

Abstract

Metal thiolates have been an important factor in regulating electron transport, but are yet to be fully understood. The X-ray structural characterization of metal thiolates, such as a revisit of $[CpFe(CO)(\mu^2-SC_6H_4OCH_3)]_2$ which we reported earlier, will begin to provide a better idea of the internal chemistry of such compounds. X-ray data for this report were collected using an Enraf-Nonius CAD4 diffractometer.

Background

Organisms at all levels of complexity have been found to have iron-sulfur proteins. Many of these proteins have interactions with two iron atoms through cysteine side chains. These iron-sulfur structures at active sites are involved in electron transport as well as a number of other catalytic functions. Electrontunneling calculations indicate an efficient electron-transfer pathway from the [Fe2S2] cluster to a heme.¹ Using phenyl thiolates as the ligands complexing the iron atoms, the substitution of the phenyl ring can affect the electron donating power of the thiolate sulfur which should affect the covalency of the metal-ligand bond.² To probe the inductive effect, it is necessary to evaluate substituents which have varying electron-withdrawing and –donating strengths. McGuire et al. found that the carbonyl frequency might be employed as a gauge of the donor ability of the thiolate ligand.³ They also reported that reduction of Fe-S distances, as determined by single-crystal X-ray crystallography, was indicative of diminished Fe_{dpi}-S_{ppi} antibonding.³

Methods

General Method for X-ray Crystallography

crystal mount	on glass fiber by epoxy		
cell detn, refls	25		
cell detn, 20 range, deg	10-26		
radiation	MoKα, graphite monochromated		
γ,Å	0.71073		
temp, K	293		
Diffractometer	Enraf-Nonius CAD-4 at Cameron University		
scan technique	θ-2θ		
scan speed, deg min ⁻¹	4-16 (in omega)		
scan width, deg	1.0 + 0.35 tan θ		
2θ range, deg	2-50		
absorption correction	Empirical psi scans		
solution method	Direct method		
extinction	None		
programs	WinGX, ⁴ SHELX, ⁵ ORTEP3, ⁴		
scattering factors	International Tables for Crystallography Vol. 4		
H atom treatment	Hydrogen atoms idealized and refined with riding con		
Formula	$[CpFe(CO)(SC_6H_4OCH_3)]_2 (1)$	[CpFe(CO)(SC ₆ H	
crystal size, mm	0.23 x 0.16 x 0.06	0.52 x 0.19 x 0.06	
crystal color	Red	Colorless	
a,b,c, Å	20.720 (8), 12.471 (5), 21.122 (7)	10.491(4), 12.305(5	
α,β,γ deg	90, 114.94 (3), 90	61.26(3), 67.42(4),	
space group	C 2/c	P-1	
Z	8	2	
F (000)	2367.65	655.91	
Refl meas, unique, obsd	8698, 3744, 1746	4853, 4573, 2865	
R for merge	0.081	0.0286	
parameters refined	307	343	
$R(r^2), R_W(r^2)$	0.082,0.176	0.0691, 0.161	
GOF	0.989	1.064	

Structures

Di-µ-4-methoxyphenylthio-bis(cyclopentadienyl carbonyl iron) *No H Atoms Shown

Di-µ-4-trifluromethylphenylthio-bis(cyclopentadienyl carbonyl iron) * No H Atoms Shown

Discussion

- Two [Fe2 S2] thiolate compounds were synthesized at Cameron University by the same method
 - Thiolate (1) contains the electron-donating group, $-OCH_3$
 - Thiolate (2) contains the electron-withdrawing group, -CF₃
- X-ray diffraction data was collected at Cameron University on an Enraf-Nonius CAD-4 Diffractometer employing serial detection at room temperature
- Corresponding bond distances and bond angles for (1) and (2) were compared
 - Fe S bond distances are net shorter in (1) than those in (2)
 - Fe C bond distances are net shorter in (1) than those in (2)
 - Fe S Fe and S Fe S bond angles are net smaller in (1)

nstraints

 $[_4CF_3)]_2$ (2)

5), 12.794(4) , 68.428(3)

- Works Cited
- 1. Bowen, A.M., Johnson E.O.D., Mercuri, F., Hoskins, N.J., Qiao, R., McCullagh, J.S.O., Lovett, J.E., Bell, S.G., Zhou, W., Timmel, C.R., Wong, L.K., and Harmer, J.R. Journal of the American Chemical Society 2017, ASAP (doi: 10.1021/jacs.7b11056)
- 2. Dey, A., Okamura, T., Ueyama, N., Hedman, B., Hodgson, K.O., Solomon, E.I. Journal of the American Chemical Society 2005, 127, 12046
- 3. McGuire, D.G., Khan, M.A., Ashby, M.T. Inorganic Chemistry 2002, 41, 2202
- 4. Farrugia, L.J. J. Appl. Cryst. <u>2012</u>, 45, 849 5. Sheldrick, G.M. Acta Cryst. 2002, A64, 112

 $[CpFe(CO)(SC_6H_4OCH_3)]_2$

Bond Distances (Å)

Fe1-S1	2.269(3)
Fe1-S2	2.278(3)
Fe2-S1	2.266(4)
Fe2-S2	2.263(3)
Fe1-C13	1.745(13)
Fe2-C26	1.745(14)
O1-C13	1.135(13)
O2-C26	1.144(13)

Bond Angles (degrees)

S1-Fe1-S2	79.08(12)
S1-Fe2-S2	79.44(12)
Fe1-S1-Fe2	97.93(13)
Fe1-S2-Fe2	97.75(13)
O1-C13-Fe1	176.0(11)
O2-C26-Fe2	178.1(10)

Acknowledgments

The authors acknowledge funding from Cameron University, the Cameron University Foundation, the Department of Chemistry, Physics, and Engineering, the Harvard and Judith Tomlinson of Duncan Endowed Lectureship in the Physical Sciences, the Dr. Robert H. Drewry Endowed Lectureship in Chemistry, and the Frances Jo Richardson Endowed Lectureship in Chemistry. The authors thank Deborah Bonkoski, JoAnn Muller, and Sylvia Chavana for technical assistance.

Comparison of Compounds

$[CpFe(CO)(SC_6H_4CF_3)]_2$

Bond Distances (Å)

Fe1-S1	2.276(3)
Fe1-S2	2.261(2)
Fe2-S1	2.273(2)
Fe2-S2	2.271(2)
Fe1-C13	1.770(8)
Fe2-C26	1.745(8)
O1-C13	1.125(9)
O2-C26	1.150(9)

Bond Angles (degrees)

S1-Fe1-S2	79.74(8)
S1-Fe2-S2	79.57(8)
Fe1-S1-Fe2	98.27(9)
Fe1-S2-Fe2	98.77(9)
O1-C13-Fe1	178.1(7)
O2-C26-Fe2	177.9(7)