Context

- Chapter 9 introduced the model of aggregate demand and supply.
- Chapter 10 developed the IS-LM model, the basis of the aggregate demand curve.
- In Chapter 11, we will use the IS-LM model to
 - see how policies and shocks affect income and the interest rate in the short run when prices are fixed
 - derive the aggregate demand curve
 - explore various explanations for the Great Depression
Equilibrium in the IS-LM Model

The IS curve represents equilibrium in the goods market.

\[Y = C(Y - T) + I(r) + G \]

The LM curve represents money market equilibrium.

\[M/P = L(r, Y) \]

The intersection determines the unique combination of \(Y \) and \(r \) that satisfies equilibrium in both markets.
Policy analysis with the *IS-LM* Model

\[Y = C(Y - T) + I(r) + G \]
\[\frac{\bar{M}}{\bar{P}} = L(r, Y) \]

Policymakers can affect macroeconomic variables with:
- fiscal policy: \(G \) and/or \(T \)
- monetary policy: \(M \)

We can use the IS-LM model to analyze the effects of these policies.
An increase in government purchases

1. IS curve shifts right by \(\frac{1}{1-MPC} \Delta G \)
 causing output & income to rise.

2. This raises money demand, causing the interest rate to rise...

3. ...which reduces investment, so the final increase in \(Y \)
 is smaller than \(\frac{1}{1-MPC} \Delta G \)
Because consumers save \((1 - \text{MPC})\) of the tax cut, the initial boost in spending is smaller for \(\Delta T\) than for an equal \(\Delta G\)...

and the IS curve shifts by

\[
\frac{-\text{MPC}}{1 - \text{MPC}} \Delta T
\]

...so the effects on \(r\) and \(Y\) are smaller for a \(\Delta T\) than for an equal \(\Delta G\).
Monetary Policy: an increase in M

1. $\Delta M > 0$ shifts the LM curve down (or to the right)

2. ...causing the interest rate to fall

3. ...which increases investment, causing output & income to rise.
Interaction between monetary & fiscal policy

- Model:
 monetary & fiscal policy variables (M, G, and T) are exogenous

- Real world:
 Monetary policymakers may adjust M in response to changes in fiscal policy, or vice versa.

- Such interaction may alter the impact of the original policy change.
The Fed’s response to $\Delta G > 0$

- Suppose Congress increases G.
- Possible Fed responses:
 1. hold M constant
 2. hold r constant
 3. hold Y constant
- In each case, the effects of the ΔG are different:
Response 1: hold \(M \) constant

If Congress raises \(G \), the IS curve shifts right.

If Fed holds \(M \) constant, then LM curve doesn’t shift.

Results:

\[
\Delta Y = Y_2 - Y_1
\]

\[
\Delta r = r_2 - r_1
\]
Response 2: hold r constant

If Congress raises G, the IS curve shifts right.

To keep r constant, Fed increases M to shift LM curve right.

Results:

\[\Delta Y = Y_3 - Y_1 \]

\[\Delta r = 0 \]
Response 3: hold Y constant

If Congress raises G, the IS curve shifts right.

To keep Y constant, Fed reduces M to shift LM curve left.

Results:

$\Delta Y = 0$

$\Delta r = r_3 - r_1$
Estimates of fiscal policy multipliers

from the DRI macroeconometric model

<table>
<thead>
<tr>
<th>Assumption about monetary policy</th>
<th>Estimated value of $\Delta Y / \Delta G$</th>
<th>Estimated value of $\Delta Y / \Delta T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fed holds money supply constant</td>
<td>0.60</td>
<td>−0.26</td>
</tr>
<tr>
<td>Fed holds nominal interest rate constant</td>
<td>1.93</td>
<td>−1.19</td>
</tr>
</tbody>
</table>
Shocks in the IS-LM Model

IS shocks: exogenous changes in the demand for goods & services.

Examples:
- stock market boom or crash
 \[\Rightarrow \text{change in households’ wealth} \]
 \[\Rightarrow \Delta C \]
- change in business or consumer confidence or expectations
 \[\Rightarrow \Delta I \text{ and/or } \Delta C \]
Shocks in the IS-LM Model

LM shocks: exogenous changes in the demand for money.

Examples:
- a wave of credit card fraud increases demand for money
- more ATMs or the Internet reduce money demand
EXERCISE: Analyze shocks with the IS-LM model

Use the IS-LM model to analyze the effects of

1. A boom in the stock market makes consumers wealthier.
2. After a wave of credit card fraud, consumers use cash more frequently in transactions.

For each shock,

a. use the IS-LM diagram to show the effects of the shock on \(Y \) and \(r \).

b. determine what happens to \(C, I \), and the unemployment rate.
CASE STUDY
The U.S. economic slowdown of 2001

~What happened~

1. Real GDP growth rate
 1994-2000: 3.9% (average annual)
 2001: 1.2%

2. Unemployment rate
 Dec 2000: 4.0%
 Dec 2001: 5.8%
CASE STUDY
The U.S. economic slowdown of 2001

~Shocks that contributed to the slowdown~

1. Falling stock prices
 From Aug 2000 to Aug 2001: -25%
 Week after 9/11: -12%

2. The terrorist attacks on 9/11
 • increased uncertainty
 • fall in consumer & business confidence

Both shocks reduced spending and shifted the IS curve left.
CASE STUDY
The U.S. economic slowdown of 2001

~The policy response~

1. Fiscal policy
 - large long-term tax cut, immediate $300 rebate checks
 - spending increases:
 aid to New York City & the airline industry, war on terrorism

2. Monetary policy
 - Fed lowered its Fed Funds rate target 11 times during 2001, from 6.5% to 1.75%
 - Money growth increased, interest rates fell
CASE STUDY
The U.S. economic slowdown of 2001

~What’s happening now~

- In the first quarter of 2002, Real GDP grew at an annual rate of 6.1%, according to final figures released by the Bureau of Economic Analysis on June 27, 2002.

- However, in its news release of June 7, 2002, the NBER Business Cycle Dating Committee had not yet determined the date of the trough in economic activity, though it acknowledges that the economy seems to be picking up.
What is the Fed’s policy instrument?

What the newspaper says:
“the Fed lowered interest rates by one-half point today”

What actually happened:
The Fed conducted expansionary monetary policy to shift the LM curve to the right until the interest rate fell 0.5 points.

The Fed targets the Federal Funds rate: it announces a target value, and uses monetary policy to shift the LM curve as needed to attain its target rate.
What is the Fed’s policy instrument?

Why does the Fed target interest rates instead of the money supply?

1) They are easier to measure than the money supply

2) The Fed might believe that LM shocks are more prevalent than IS shocks. If so, then targeting the interest rate stabilizes income better than targeting the money supply.

(See Problem 7 on p.306)
So far, we’ve been using the IS-LM model to analyze the short run, when the price level is assumed fixed.

However, a change in P would shift the LM curve and therefore affect Y.

The **aggregate demand curve** (introduced in chap. 9) captures this relationship between P and Y.

Intuition for slope of AD curve:

\[\uparrow P \Rightarrow \downarrow \left(\frac{M}{P} \right) \]

\[\Rightarrow \text{LM shifts left} \]

\[\Rightarrow \uparrow r \]

\[\Rightarrow \downarrow I \]

\[\Rightarrow \downarrow Y \]
Monetary policy and the AD curve

The Fed can increase aggregate demand:

↑M ⇒ LM shifts right
⇒ ↓r
⇒ ↑I
⇒ ↑Y at each value of P
Expansionary fiscal policy (↑G and/or ↓T) increases aggregate demand:

↓T ⇒ ↑C

⇒ IS shifts right

⇒ ↑Y at each value of P
Recall from Chapter 9: The force that moves the economy from the short run to the long run is the gradual adjustment of prices.

<table>
<thead>
<tr>
<th>In the short-run equilibrium, if</th>
<th>then over time, the price level will</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y > \bar{Y})</td>
<td>rise</td>
</tr>
<tr>
<td>(Y < \bar{Y})</td>
<td>fall</td>
</tr>
<tr>
<td>(Y = \bar{Y})</td>
<td>remain constant</td>
</tr>
</tbody>
</table>
A negative IS shock shifts IS and AD left, causing Y to fall.
The SR and LR effects of an IS shock

In the new short-run equilibrium, $Y < \bar{Y}$
The SR and LR effects of an IS shock

In the new short-run equilibrium, $Y < \bar{Y}$

Over time, P gradually falls, which causes
- SRAS to move down
- M/P to increase, which causes LM to move down
The SR and LR effects of an IS shock

Over time, \(P \) gradually falls, which causes
- SRAS to move down
- \(M/P \) to increase, which causes LM to move down
This process continues until economy reaches a long-run equilibrium with $Y = Y$.

\[\text{AD}_1 \rightarrow \text{SRAS}_1 \rightarrow \text{IS}_1 \rightarrow \text{LRAS} \]

\[\text{AD}_2 \rightarrow \text{SRAS}_2 \rightarrow \text{IS}_2 \rightarrow \text{LRAS} \]

\[\text{LM}(P_1) \rightarrow \text{LRAS} \]

\[\text{LM}(P_2) \rightarrow \text{LRAS} \]
EXERCISE: Analyze SR & LR effects of ΔM

a. Draw the IS-LM and AD-AS diagrams as shown here.

b. Suppose Fed increases M. Show the short-run effects on your graphs.

c. Show what happens in the transition from the short run to the long run.

d. How do the new long-run equilibrium values of the endogenous variables compare to their initial values?
The Great Depression

Unemployment (right scale)

Real GNP (left scale)
The Spending Hypothesis:
Shocks to the IS Curve

- asserts that the Depression was largely due to an exogenous fall in the demand for goods & services -- a leftward shift of the IS curve

- evidence:
 output and interest rates both fell, which is what a leftward IS shift would cause
The Spending Hypothesis:
Reasons for the IS shift

1. Stock market crash ⇒ exogenous ↓C
 - Oct-Dec 1929: S&P 500 fell 17%
 - Oct 1929-Dec 1933: S&P 500 fell 71%

2. Drop in investment
 - “correction” after overbuilding in the 1920s
 - widespread bank failures made it harder to obtain financing for investment

3. Contractionary fiscal policy
 - in the face of falling tax revenues and increasing deficits, politicians raised tax rates and cut spending
The Money Hypothesis: A Shock to the LM Curve

- asserts that the Depression was largely due to huge fall in the money supply
- evidence:
 M1 fell 25% during 1929-33.

But, two problems with this hypothesis:

1. P fell even more, so M/P actually rose slightly during 1929-31.
2. nominal interest rates fell, which is the opposite of what would result from a leftward LM shift.
The Money Hypothesis Again: *The Effects of Falling Prices*

- asserts that the severity of the Depression was due to a huge deflation: \(P \) fell 25% during 1929-33.

- This deflation was probably caused by the fall in \(M \), so perhaps money played an important role after all.

- In what ways does a deflation affect the economy?
The Money Hypothesis Again: *The Effects of Falling Prices*

The stabilizing effects of deflation:

- \(\downarrow P \Rightarrow \uparrow (\frac{M}{P}) \Rightarrow LM \) shifts right \(\Rightarrow \uparrow Y \)

- **Pigou effect:**
 - \(\downarrow P \Rightarrow \uparrow (\frac{M}{P}) \)
 - \(\Rightarrow \) consumers’ wealth \(\uparrow \)
 - \(\Rightarrow \uparrow C \)
 - \(\Rightarrow IS \) shifts right
 - \(\Rightarrow \uparrow Y \)
The destabilizing effects of unexpected deflation: **debt-deflation theory**

\(\downarrow P \) (if unexpected)

\(\Rightarrow \) transfers purchasing power from borrowers to lenders

\(\Rightarrow \) borrowers spend less,

\(\Rightarrow \) lenders spend more

\(\Rightarrow \) if borrowers’ propensity to spend is larger than lenders, then aggregate spending falls, the IS curve shifts left, and \(Y \) falls
The Money Hypothesis Again:
The Effects of Falling Prices

The destabilizing effects of *expected* deflation:

\[\downarrow \pi^e \]

\[\Rightarrow r \uparrow \quad \text{for each value of } i \]

\[\Rightarrow I \downarrow \quad \text{because } I = I(r) \]

\[\Rightarrow \text{planned expenditure & agg. demand } \downarrow \]

\[\Rightarrow \text{income & output } \downarrow \]
Why another Depression is unlikely

- Policymakers (or their advisors) now know much more about macroeconomics:
 - The Fed knows better than to let M fall so much, especially during a contraction.
 - Fiscal policymakers know better than to raise taxes or cut spending during a contraction.

- Federal deposit insurance makes widespread bank failures very unlikely.

- **Automatic stabilizers** make fiscal policy expansionary during an economic downturn.
Chapter summary

1. IS-LM model
 - a theory of aggregate demand
 - exogenous: $M, G, T,$
 - P exogenous in short run, Y in long run
 - endogenous: $r,$
 - Y endogenous in short run, P in long run
 - IS curve: goods market equilibrium
 - LM curve: money market equilibrium
2. AD curve

- shows relation between \(P \) and the IS-LM model’s equilibrium \(Y \).
- negative slope because
 \[\uparrow P \Rightarrow \downarrow \left(\frac{M}{P} \right) \Rightarrow \uparrow r \Rightarrow \downarrow I \Rightarrow \downarrow Y \]
- expansionary fiscal policy shifts IS curve right, raises income, and shifts AD curve right
- expansionary monetary policy shifts LM curve right, raises income, and shifts AD curve right
- IS or LM shocks shift the AD curve