CHAPTER THREE
National Income: Where it Comes From and Where it Goes
In this chapter you will learn:

- what determines the economy’s total output/income
- how the prices of the factors of production are determined
- how total income is distributed
- what determines the demand for goods and services
- how equilibrium in the goods market is achieved
Outline of model

A closed economy, market-clearing model

Supply side
 • factor markets (supply, demand, price)
 • determination of output/income

Demand side
 • determinants of C, I, and G

Equilibrium
 • goods market
 • loanable funds market
Factors of production

\[K = \text{capital, tools, machines, and structures used in production} \]

\[L = \text{labor, the physical and mental efforts of workers} \]
The production function

- denoted \(Y = F(K, L) \)
- shows how much output \(Y \) the economy can produce from \(K \) units of capital and \(L \) units of labor.
- reflects the economy’s level of technology.
- exhibits *constant returns to scale.*
Returns to scale: a review

Initially \(Y_1 = F(K_1, L_1) \)

Scale all inputs by the same factor \(z \):

\[K_2 = zK_1 \quad \text{and} \quad L_2 = zL_1 \]

(If \(z = 1.25 \), then all inputs are increased by 25%)

What happens to output, \(Y_2 = F(K_2, L_2) \)?

- If *constant returns to scale*, \(Y_2 = zY_1 \)
- If *increasing returns to scale*, \(Y_2 > zY_1 \)
- If *decreasing returns to scale*, \(Y_2 < zY_1 \)
Exercise: determine returns to scale

Determine whether each of the following production functions has constant, increasing, or decreasing returns to scale:

a) \(F(K, L) = 2K + 15L \)

b) \(F(K, L) = \sqrt{KL} \)

c) \(F(K, L) = 2\sqrt{K} + 15\sqrt{L} \)
Assumptions of the model

1. Technology is fixed.
2. The economy’s supplies of capital and labor are fixed at

\[K = \bar{K} \] \quad \text{and} \quad \[L = \bar{L} \]
Determining GDP

Output is determined by the fixed factor supplies and the fixed state of technology:

\[\bar{Y} = F(\bar{K}, \bar{L}) \]
The distribution of national income

- determined by factor prices, the prices per unit that firms pay for the factors of production.

- The wage is the price of L, the rental rate is the price of K.
Notation

\[W = \text{nominal wage} \]
\[R = \text{nominal rental rate} \]
\[P = \text{price of output} \]
\[\frac{W}{P} = \text{real wage} \]
\[\text{(measured in units of output)} \]
\[\frac{R}{P} = \text{real rental rate} \]
How factor prices are determined

- Factor prices are determined by supply and demand in factor markets.
- Recall: Supply of each factor is fixed.
- What about demand?
Demand for labor

- Assume markets are competitive: each firm takes W, R, and P as given.

- Basic idea:
 A firm hires each unit of labor if the cost does not exceed the benefit.

 \[
 \text{cost} = \text{real wage} \\
 \text{benefit} = \text{marginal product of labor}
 \]
Marginal product of labor \((MPL)\)

def:

The extra output the firm can produce using an additional unit of labor (holding other inputs fixed):

\[
MPL = F(K, L + 1) - F(K, L)
\]
Exercise: compute & graph MPL

a. Determine MPL at each value of L

b. Graph the production function

c. Graph the MPL curve with MPL on the vertical axis and L on the horizontal axis

<table>
<thead>
<tr>
<th>L</th>
<th>Y</th>
<th>MPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>n.a.</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>?</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>?</td>
</tr>
<tr>
<td>6</td>
<td>45</td>
<td>?</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>?</td>
</tr>
<tr>
<td>8</td>
<td>52</td>
<td>?</td>
</tr>
<tr>
<td>9</td>
<td>54</td>
<td>?</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
<td>?</td>
</tr>
</tbody>
</table>
answers:

- **Production function**
 - Output (Y) vs. Labor (L) graph showing the relationship between output and labor.

- **Marginal Product of Labor**
 - MPL (units of output) vs. Labor (L) graph showing the marginal product of labor.

CHAPTER 3 National Income
The MPL and the production function

As more labor is added, $MPL \downarrow$

Slope of the production function equals MPL

$F(K, L)$

output

Y

labor

L
Diminishing marginal returns

- As a factor input is increased, its marginal product falls (other things equal).
- Intuition:
 \[\uparrow L \text{ while holding } K \text{ fixed} \]
 \[\Rightarrow \text{fewer machines per worker} \]
 \[\Rightarrow \text{lower productivity} \]
Check your understanding:

Which of these production functions have diminishing marginal returns to labor?

a) \(F(K, L) = 2K + 15L \)

b) \(F(K, L) = \sqrt{KL} \)

c) \(F(K, L) = 2\sqrt{K} + 15\sqrt{L} \)
Exercise (part 2)

Suppose $W/P = 6$.

d. If $L = 3$, should firm hire more or less labor? Why?

e. If $L = 7$, should firm hire more or less labor? Why?

<table>
<thead>
<tr>
<th>L</th>
<th>Y</th>
<th>MPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>n.a.</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>54</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
<td>1</td>
</tr>
</tbody>
</table>
Each firm hires labor up to the point where \(MPL = W/P \)
Determining the rental rate

We have just seen that \(MPL = \frac{W}{P} \)

The same logic shows that \(MPK = \frac{R}{P} \):

- diminishing returns to capital: \(MPK \downarrow \) as \(K \uparrow \)

- The \(MPK \) curve is the firm’s demand curve for renting capital.

- Firms maximize profits by choosing \(K \) such that \(MPK = \frac{R}{P} \).
The Neoclassical Theory of Distribution

- states that each factor input is paid its marginal product
- accepted by most economists
How income is distributed:

Total labor income: \[\frac{W}{P} \bar{L} = MPL \times \bar{L} \]

Total capital income: \[\frac{R}{P} \bar{K} = MPK \times \bar{K} \]

If production function has constant returns to scale, then

\[\bar{Y} = MPL \times \bar{L} + MPK \times \bar{K} \]
Outline of model

A closed economy, market-clearing model

Supply side

DONE ✓ factor markets (supply, demand, price)
DONE ✓ determination of output/income

Demand side

Next ➔ □ determinants of \(C, I, \) and \(G \)

Equilibrium

□ goods market
□ loanable funds market
Demand for goods & services

Components of aggregate demand:

\[C = \text{consumer demand for g & s} \]
\[I = \text{demand for investment goods} \]
\[G = \text{government demand for g & s} \]

(closed economy: no \(NX \))
Consumption, C

- **def:** *disposable income* is total income minus total taxes: $Y - T$

- Consumption function: $C = C(Y - T)$

 Shows that $(Y - T) \implies C$

- **def:** The *marginal propensity to consume* is the increase in C caused by a one-unit increase in disposable income.
The consumption function

The slope of the consumption function is the MPC.
Investment, \(I \)

- The investment function is \(I = I(r) \), where \(r \) denotes the **real interest rate**, the nominal interest rate corrected for inflation.

- The real interest rate is

 - the cost of borrowing

 - the opportunity cost of using one’s own funds

So, \(\uparrow r \Rightarrow \downarrow I \)
The investment function

Spending on investment goods is a downward-sloping function of the real interest rate.

\[I(r) \]

\[r \]

\[I \]
Government spending, G

- G includes government spending on goods and services.
- G excludes *transfer payments*
- Assume government spending and total taxes are exogenous:

$$G = \bar{G} \quad \text{and} \quad T = \bar{T}$$
The market for goods & services

- Agg. demand: \(C(\overline{Y} - \overline{T}) + I(r) + \overline{G} \)
- Agg. supply: \(\overline{Y} = F(\overline{K}, \overline{L}) \)
- Equilibrium: \(\overline{Y} = C(\overline{Y} - \overline{T}) + I(r) + \overline{G} \)

The real interest rate adjusts to equate demand with supply.
The loanable funds market

A simple supply-demand model of the financial system.

One asset: “loanable funds”
- demand for funds: investment
- supply of funds: saving
- “price” of funds: real interest rate
The demand for loanable funds:

- **comes from investment:** Firms borrow to finance spending on plant & equipment, new office buildings, etc. Consumers borrow to buy new houses.

- **depends negatively on** r, the "price" of loanable funds (the cost of borrowing).
Loanable funds demand curve

The investment curve is also the demand curve for loanable funds.
Supply of funds: Saving

The supply of loanable funds comes from saving:

- **Households** use their saving to make bank deposits, purchase bonds and other assets. These funds become available to firms to borrow to finance investment spending.

- The **government** may also contribute to saving if it does not spend all of the tax revenue it receives.
Types of saving

- **private saving** = \((Y - T) - C\)
- **public saving** = \(T - G\)
- **national saving, \(S\)**

 = private saving + public saving

 = \((Y - T) - C + T - G\)

 = \(Y - C - G\)
Notation: \(\Delta = \text{change in a variable} \)

- For any variable \(X \), \(\Delta X = \text{“the change in } X \text{”} \)
 \(\Delta \) is the Greek (uppercase) letter \(Delta \)

Examples:
- If \(\Delta L = 1 \) and \(\Delta K = 0 \), then \(\Delta Y = \text{MPL} \).
 More generally, if \(\Delta K = 0 \), then \(\text{MPL} = \frac{\Delta Y}{\Delta L} \).

- \(\Delta(Y - T) = \Delta Y - \Delta T \), so
 \[
 \Delta C = \text{MPC} \times (\Delta Y - \Delta T) \\
 = \text{MPC} \Delta Y - \text{MPC} \Delta T
 \]
EXERCISE:
Calculate the change in saving

Suppose MPC = 0.8 and MPL = 20.
For each of the following, compute ΔS:

a. $\Delta G = 100$
b. $\Delta T = 100$
c. $\Delta Y = 100$
d. $\Delta L = 10$
\[\Delta S = \Delta Y - \Delta C - \Delta G = \Delta Y - 0.8(\Delta Y - \Delta T) - \Delta G = 0.2\Delta Y + 0.8\Delta T - \Delta G \]

a. \(\Delta S = -100 \)

b. \(\Delta S = 0.8 \times 100 = 80 \)

c. \(\Delta S = 0.2 \times 100 = 20 \)

d. \(\Delta Y = MPL \times \Delta L = 20 \times 10 = 200, \)
\[\Delta S = 0.2 \times \Delta Y = 0.2 \times 200 = 40. \]
digression:
Budget surpluses and deficits

- When $T > G$,
 budget surplus = $(T - G)$ = public saving

- When $T < G$,
 budget deficit = $(G - T)$
 and public saving is negative.

- When $T = G$,
 budget is balanced and public saving = 0.
The U.S. Federal Government Budget

\[(T-G)\] as a % of GDP

% of GDP

The U.S. Federal Government Debt

Fun fact: In the early 1990s, nearly 18 cents of every tax dollar went to pay interest on the debt.
(Today it’s about 9 cents.)
Loanable funds supply curve

National saving does not depend on r, so the supply curve is vertical.

$$S = Y - C(Y - T) - G$$
Loanable funds market equilibrium

Equilibrium real interest rate

Equilibrium level of investment

\[S = Y - C(Y - T) - G \]
The special role of r

r adjusts to equilibrate the goods market and the loanable funds market simultaneously:

If L.F. market in equilibrium, then

$$Y - C - G = I$$

Add $(C + G)$ to both sides to get

$$Y = C + I + G \quad (goods \ market \ eq'm)$$

Thus,

Eq’m in L.F. market \iff Eq’m in goods market
Digression: mastering models

To learn a model well, be sure to know:

1. Which of its variables are endogenous and which are exogenous.

2. For each curve in the diagram, know
 a. definition
 b. intuition for slope
 c. all the things that can shift the curve

3. Use the model to analyze the effects of each item in 2c.
Mastering the loanable funds model

1. Things that shift the saving curve
 a. public saving
 i. fiscal policy: changes in G or T
 b. private saving
 i. preferences
 ii. tax laws that affect saving
 • 401(k)
 • IRA
 • replace income tax with consumption tax
CASE STUDY

The Reagan Deficits

- Reagan policies during early 1980s:
 - increases in defense spending: \(\Delta G > 0 \)
 - big tax cuts: \(\Delta T < 0 \)

- According to our model, both policies reduce national saving:

\[
\bar{S} = \bar{Y} - C(\bar{Y} - \bar{T}) - \bar{G}
\]

\(\uparrow \bar{G} \Rightarrow \downarrow \bar{S} \)

\(\downarrow \bar{T} \Rightarrow \uparrow C \Rightarrow \downarrow \bar{S} \)
1. The increase in the deficit reduces saving...

2. ...which causes the real interest rate to rise...

3. ...which reduces the level of investment.
Are the data consistent with these results?

<table>
<thead>
<tr>
<th>variable</th>
<th>1970s</th>
<th>1980s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T - G$</td>
<td>-2.2</td>
<td>-3.9</td>
</tr>
<tr>
<td>S</td>
<td>19.6</td>
<td>17.4</td>
</tr>
<tr>
<td>r</td>
<td>1.1</td>
<td>6.3</td>
</tr>
<tr>
<td>I</td>
<td>19.9</td>
<td>19.4</td>
</tr>
</tbody>
</table>

$T-G$, S, and I are expressed as a percent of GDP

All figures are averages over the decade shown.
Now you try…

- Draw the diagram for the loanable funds model.
- Suppose the tax laws are altered to provide more incentives for private saving.
- What happens to the interest rate and investment?
- (Assume that T doesn’t change)
2. Things that shift the investment curve
 a. certain technological innovations
 • to take advantage of the innovation, firms must buy new investment goods
 b. tax laws that affect investment
 • investment tax credit
An increase in investment demand

...raises the interest rate.

But the equilibrium level of investment cannot increase because the supply of loanable funds is fixed.
Saving and the interest rate

- Why might saving depend on \(r \)?
- How would the results of an increase in investment demand be different?
 - Would \(r \) rise as much?
 - Would the equilibrium value of \(I \) change?
An increase in investment demand when saving depends on the interest rate.

1. An increase in desired investment...

2. ... raises the interest rate...

3. ... and raises equilibrium investment and saving.
Chapter summary

1. Total output is determined by
 - how much capital and labor the economy has
 - the level of technology

2. Competitive firms hire each factor until its marginal product equals its price.

3. If the production function has constant returns to scale, then labor income plus capital income equals total income (output).
Chapter summary

4. The economy’s output is used for
 - consumption
 (which depends on disposable income)
 - investment
 (depends on the real interest rate)
 - government spending
 (exogenous)

5. The real interest rate adjusts to equate the demand for and supply of
 - goods and services
 - loanable funds
6. A decrease in national saving causes the interest rate to rise and investment to fall. An increase in investment demand causes the interest rate to rise, but does not affect the equilibrium level of investment if the supply of loanable funds is fixed.