Fundamentals of Analytical Chemistry

Chapter 6
Random Errors in Chemical Analysis

Random Error
- Cannot eliminate!
- Causes are the same as systematic error.
 - Measurements ‘closer to the edge’
 - Many times a function of the analyst!
- Random error tends to be bi-directional
 - Tendency over the long term to cancel
- Gaussian Curve

Histogram
- With a finite set of measurements, can plot a histogram
 - Values (or ranges of values) on x-axis
 - Frequency on y-axis

Population Statistics
- Statistics from data for which *every value* is known!
 - Average age of students at Cameron University.
 - Population mean:
 \[\mu = \frac{\sum x_i}{N} \]
 - Population standard deviation:
 \[\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}} \]
Sample Statistics
- Sample mean: $\bar{x} = \frac{\sum x_i}{N}$
 - No difference in calculation from population mean
- Sample standard deviation: $s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{N-1}}$
 - Measure of precision
 - Note the denominator is equal to $N-1$
 - Loss of one degree of freedom.

Other Statistical Values
- Variance
 - Standard deviation squared
 - Can be population (σ^2) or sample (s^2)
- Standard error of the mean
 - Gaussian distribution based on single measurement
 - May improve reliability by multiple measurements.

Normalized Gaussian Curve
- Let $z = \frac{(x - \mu)}{\sigma}$
- "Normalized" Gaussian equation
- Gives plot with maximum at 0 and z equal to one standard deviation unit

Area under the curve
- From calculus, we know that the integral of values from the Gaussian curve gives us the area under the curve
- From $-\infty$ to ∞, the integral of our normalized function is 1
- Defining points $\pm z$, area = 0.683
- Defining points $\pm 2z$, area = 0.954
- Defining points $\pm 3z$, area = 0.997

Gaussian curve
- This gives us the relative probability of finding points defined by our value of z
 - $\pm z$, 68.3%
 - $\pm 2z$, 95.4%
 - $\pm 3z$, 99.7%
- We can also determine percentage and calculate z
 - 90% = $\pm 1.64z$
 - 95% = $\pm 1.96z$

Loss of one degree of freedom.
- Note the denominator is equal to N
- Measure of precision
- No difference in calculation from population

Sample Statistics
- Unfortunately, in analytical chemistry we don't have the luxury of knowing all of the values
- Representative sample
 - May or may not be truly 'representative'
 - Must modify our approach to calculating statistical values.

$\bar{x} = \frac{\sum x_i}{N}$
$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{N-1}}$
Comparing s and \(\sigma \)
- When \(N > 20 \), \(s \) is a pretty good estimator of \(\sigma \)
- Can assume that \(s \approx \sigma \)
- Series of measurements, with no individual set of measurements > 20, can calculate a ‘pooled’ standard deviation
- Assumption is deviation is a function of the method and not the operator!

Pooled Standard Deviation

\[s_{\text{pooled}} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \ldots + (n_N - 1)s_N^2}{n_1 + n_2 + \ldots + n_N - N}} \]

Since most calculators can calculate a standard deviation, there is a ‘modified’ version of this equation that can be used

\[s_{\text{pooled}} = \sqrt{\frac{\sum (n_i - 1)s_i^2}{N_1 + N_2 + \ldots + N_N}} \]

Other Measurements
- Relative standard deviation
 \[s_r = \frac{s}{\bar{x}} \]
- Coefficient of Variation
 \[s \times 100\% \]
- Other values
 - RSD in ppt (parts per thousand)
 - \(s_x \times 1000 \)

Rounding
- ‘Rounding’ is the process of mapping from an infinite set to a finite set.
 - Results of a calculation may be any value
 - Rounding insures the values reported have the correct number of digits
 - Significant Figures
 - Rounding is really picking the closest allowed value to your calculated value

Rounding
- First look – first unretained digit
 - 0-4: lesser of the allowed values
 - 5-9: greater of the allowed values
 - 5 – must investigate further
 - Non-terminal 5
 - Followed by other non-zero digits (16.01487)
 - ALWAYS the greater of the allowed values
 - Terminal 5
 - Not followed by a non-zero digit (16.0)
 - Round such that the last retained digit is even

Significant Figures
- Every measurement has three parts
 - Magnitude
 - Units
 - Error
- Significant figures are used to indicate the error in a measurement or the result of a calculation that uses measurements.
 - All known digits and the first interpolated digit
 - \(\pm 1 \) in the last decimal place
What Figures are Significant?
- All non-zero digits are significant figures (sf)
- Zero
 - Between sf – significant (5.04)
 - Right of dp and right of sf – significant (14.50)
- 5.00147
 - B/N meet both conditions – NOT significant!
 - Zeros in this case tell magnitude and not error
- 47,000,000 (?)

Logarithms
- To determine significant figures in logarithms, we have to understand that logarithms are aliens!
 - Anything before the decimal is not significant
 - Anything after the decimal is significant
 - 1.825
 - 0.052
 - 8.004
 - All have 3 significant figures!

Rules for Significant Figures in Calculations
- Multiplication and/or division
 - Round answer to match the factor with the fewest number of significant figures.
 - 14.2 + 8.41 = 22.61
 - 14.2 (tenths place), 8.41 (hundredths place)
 - Answer becomes 22.6 (rounded)
 - 5.87 * 15.1 = ?

Rules for Significant Figures in Calculations
- Addition and/or subtraction
 - Round answer to the ‘least reliable’ decimal place.
 - 14.2 + 8.41 = 22.61
 - 14.2 (tenths place), 8.41 (hundredths place)
 - Answer becomes 22.6 (rounded)
 - 5.87 + 15.1 = ?
Special Situations (1)

- **Mean**
 - Decimal places for the mean should match the decimal places of the measurements used to calculate the mean.

- **Standard Deviation**
 - Decimal places for the standard deviation should match the decimal places of the measurements used to calculate the standard deviation.

Error Propagation

- **Addition/subtraction**
 - Absolute error propagates
 - For $y = a \pm s_a + b \pm s_b - c \pm s_c$, $s_y = \sqrt{(s_a^2) + (s_b^2) + (s_c^2)}$

- **Multiplication/division**
 - Relative error propagates
 - For $y = s_y = a \times s_a / b \times s_b / c \times s_c$, $s_y/y = (s_a/a) + (s_b/b) + (s_c/c)$

- **Logarithms**
 - $s_y = \ln(10) \times s_a$

 - If you know s_y, you can calculate s_a/r directly.
 - Rearrange equation to solve for s_a if you know s_y/r.
 - Only error propagation that relates an absolute error to a relative error.
 - Absolute error (alien) to relative error (real).

Significant Figures

Special Situations (2)

- **Rounding results after error propagation**
 - First, round the error term (s_y) to one significant figure.
 - Second, round the answer (y) to the same number of decimal places as the error term.

Goal is to find s_y!

- For multiplication/division, must then multiply the result of the calculation by y
 - $y = (s_y/y) = s_y$
 - y is the result of the calculation ignoring the standard deviation (error) terms.

- **Exponent**
 - For $y = a^x$, $s_y/y = (s_a/a)$
 - Error doesn’t “cancel”
 - Must then calculate s_y as above.

Error Propagation

- **Also called standard deviation propagation**
 - What should the standard deviation (or error) be when numbers with a known standard deviation (or error) are manipulated? Important to consider:
 - Addition/subtraction
 - Multiplication/division
 - Exponents
 - Logarithms

Goal is to find s_y!

- For multiplication/division, must then multiply the result of the calculation by y
 - $y = (s_y/y) = s_y$
 - y is the result of the calculation ignoring the standard deviation (error) terms.

- **Exponent**
 - For $y = a^x$, $s_y/y = (s_a/a)$
 - Error doesn’t “cancel”
 - Must then calculate s_y as above.

Goal is to find s_y!

- For multiplication/division, must then multiply the result of the calculation by y
 - $y = (s_y/y) = s_y$
 - y is the result of the calculation ignoring the standard deviation (error) terms.

- **Exponent**
 - For $y = a^x$, $s_y/y = (s_a/a)$
 - Error doesn’t “cancel”
 - Must then calculate s_y as above.

Goal is to find s_y!

- For multiplication/division, must then multiply the result of the calculation by y
 - $y = (s_y/y) = s_y$
 - y is the result of the calculation ignoring the standard deviation (error) terms.

- **Exponent**
 - For $y = a^x$, $s_y/y = (s_a/a)$
 - Error doesn’t “cancel”
 - Must then calculate s_y as above.

Goal is to find s_y!

- For multiplication/division, must then multiply the result of the calculation by y
 - $y = (s_y/y) = s_y$
 - y is the result of the calculation ignoring the standard deviation (error) terms.

- **Exponent**
 - For $y = a^x$, $s_y/y = (s_a/a)$
 - Error doesn’t “cancel”
 - Must then calculate s_y as above.

Goal is to find s_y!

- For multiplication/division, must then multiply the result of the calculation by y
 - $y = (s_y/y) = s_y$
 - y is the result of the calculation ignoring the standard deviation (error) terms.

- **Exponent**
 - For $y = a^x$, $s_y/y = (s_a/a)$
 - Error doesn’t “cancel”
 - Must then calculate s_y as above.

Goal is to find s_y!

- For multiplication/division, must then multiply the result of the calculation by y
 - $y = (s_y/y) = s_y$
 - y is the result of the calculation ignoring the standard deviation (error) terms.

- **Exponent**
 - For $y = a^x$, $s_y/y = (s_a/a)$
 - Error doesn’t “cancel”
 - Must then calculate s_y as above.

Goal is to find s_y!

- For multiplication/division, must then multiply the result of the calculation by y
 - $y = (s_y/y) = s_y$
 - y is the result of the calculation ignoring the standard deviation (error) terms.

- **Exponent**
 - For $y = a^x$, $s_y/y = (s_a/a)$
 - Error doesn’t “cancel”
 - Must then calculate s_y as above.

Goal is to find s_y!

- For multiplication/division, must then multiply the result of the calculation by y
 - $y = (s_y/y) = s_y$
 - y is the result of the calculation ignoring the standard deviation (error) terms.

- **Exponent**
 - For $y = a^x$, $s_y/y = (s_a/a)$
 - Error doesn’t “cancel”
 - Must then calculate s_y as above.

Goal is to find s_y!

- For multiplication/division, must then multiply the result of the calculation by y
 - $y = (s_y/y) = s_y$
 - y is the result of the calculation ignoring the standard deviation (error) terms.

- **Exponent**
 - For $y = a^x$, $s_y/y = (s_a/a)$
 - Error doesn’t “cancel”
 - Must then calculate s_y as above.