This homework is due on Wednesday, April 2, 2008, at classtime. Late homework is not accepted.

1. (2 points) The half-life of ^{135}Pr is 24 minutes. If the initial activity of a ^{135}Pr sample is 5000 cpm (counts per minute), what would its activity be after 96 minutes?

SHOW YOUR WORK. (Section 10.3)

96 minutes = 4 half-lives (96/24 = 4), so the activity after four half-lives is:

$$\text{Activity after four half lives} = 5000 \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = 312 \text{ cpm}$$

2. (2 points) A particular radioactive sample decays from an activity of 10000 cpm to 625 cpm in 400 minutes. What is the half-life of the radioactive sample? **SHOW YOUR WORK** (Section 10.3)

First, how many half-lives did the sample go through?

$$10000 \text{ cpm} \times \frac{1}{2} = 5000 \text{ cpm} \times \frac{1}{2} = 2500 \text{ cpm} \times \frac{1}{2} = 1250 \text{ cpm} \times \frac{1}{2} = 625 \text{ cpm}$$

so it went through 4 half-lives. Since it took 400 minutes, each half-life must be 400 minutes/4 half-lives = 100 minutes for each half-life.

3. (10 points) Complete each of the following equations. (Section 10.3)

$$^{4}_1\text{n} + ^{28}_{14}\text{Si} \rightarrow ^{28}_{13}\text{Al} + ^{1}_1\text{H}$$

$$^{252}_{98}\text{Cf} \rightarrow ^{106}_{43}\text{Tc} + ^{142}_{55}\text{Cs} + 4^{1}_0\text{n}$$

$$^{226}_{88}\text{Ra} \rightarrow ^{226}_{89}\text{Ac} + ^{0}_{1}\text{e}$$

$$^{209}_{84}\text{Po} \rightarrow ^{205}_{82}\text{Pb} + 4^{2}_2\text{He}$$

$$4^{2}_2\text{He} + ^{14}_7\text{N} \rightarrow ^{17}_8\text{O} + ^{1}_1\text{H}$$
4. (2 points) Calculate the mass defect (in u) and the energy produced (in MeV) in the deuterium reaction shown. **SHOW YOUR WORK.** (Section 10.6)

\[
\begin{align*}
\frac{2}{1}H + \frac{2}{1}H & \rightarrow \frac{3}{1}H + \frac{1}{1}H \\
(2.0140 \text{ u}) + (2.0140 \text{ u}) & \rightarrow (3.0161 \text{ u}) + (1.0078 \text{ u})
\end{align*}
\]

Mass defect = 2.0140 u + 2.0140 u - 3.0161 u - 1.0078 u = 0.0041 u

energy = 0.0041 u \times 931 \text{ MeV/u} = 3.82 \text{ MeV}

5. (10 points) (Section 11.4)
 a. Give the chemical symbols of five elements that are metals.
 ️*Take your pick to the left of the zig – zag line*

 b. Give the chemical symbols of five elements that are nonmetals.
 ️*Take your pick to the right of the zig – zag line*

 c. Name the element that is the most abundant in the Earth’s crust.
 Oxygen – notice silicon is second and, together, they are the major components of sand.

 d. Name two elements that occur naturally as liquids.
 Mercury, Bromine

 e. Give the chemical symbol for the following elements.
 - copper \(Cu \)
 - iron \(Fe \)
 - sodium \(Na \)
 - carbon \(C \)
 - silver \(Ag \)
 - gold \(Au \)

6. (8 points) For each of the following, state whether it is a pure substance or a mixture. Further, if it is a pure substance identify it as an element or a compound. If it is a mixture, classify it as a homogeneous or heterogeneous mixture. (Section 11.1)

 Water with salt dissolved in it **mixture – homogeneous**

 Water with so much salt in it that some solid salt is sitting on the bottom **mixture – heterogeneous**

 A sample of pure silver **pure substance - element**

 Pure water **pure substance - compound**