Name _________________________

CHEM 1474
Test #3
Fall 2010 (Buckley)

Multiple Choice. Each is worth 2 points.

1. Which of the following is the conjugate base of HPO_4^{2-}?
 a. PO_4^{3-}
 b. H_2PO_4^-
 c. H_3PO_4
 d. OH^-

2. K_a for phenol, $\text{HC}_6\text{H}_5\text{O}$, is 1.3×10^{-10}. What is the expression that will give the value of K_b for the phenolate ion, $\text{C}_6\text{H}_5\text{O}^-$?
 a. $(1.3 \times 10^{-10}) \times (1.0 \times 10^{-14})$
 b. $\frac{1.3 \times 10^{-10}}{1.0 \times 10^{-14}}$
 c. $\frac{1.0 \times 10^{-14}}{1.3 \times 10^{-10}}$
 d. $\frac{1.0 \times 10^{-14}}{(1.3 \times 10^{-10})^2}$

For questions 3-5 consider the following compounds and their associated Roman numerals.

I. $\text{Ba(C}_2\text{H}_3\text{O}_2)_2$
II. NH_4NO_3
III. SrCl_2
IV. AlCl_3
V. $\text{Ca(NO}_2)_2$

3. Solutions of which of the compounds above, I through V, would form acidic solutions?
 a. I only
 b. III and IV only
 c. I and V only
 d. II and IV only
 e. II only

4. Solutions of which of the compounds above, I through V, would form neutral solutions?
 a. I only
 b. III and IV only
 c. III only
 d. II, III, and IV only
 e. V only

5. Solutions of which of the compounds above, I through V, would form basic solutions?
 a. I only
 b. III and IV only
 c. I and V only
 d. II and IV only
 e. V only

$$p\text{H} = pK_a + \log \frac{[\text{base}]}{[\text{acid}]}$$
6. Which of the following compounds would you expect to be the most acidic?

a. \[
\begin{array}{c}
\text{C} \\
\text{Cl} \\
\text{O} \\
\text{H}
\end{array}
\quad \text{d.} \quad \begin{array}{c}
\text{C} \\
\text{C} \\
\text{O} \\
\text{H}
\end{array}
\]

b. \[
\begin{array}{c}
\text{H} \\
\text{C} \\
\text{O} \\
\text{O} \\
\text{H}
\end{array}
\quad \text{e.} \quad \begin{array}{c}
\text{C} \\
\text{C} \\
\text{O} \\
\text{Cl} \\
\text{O} \\
\text{H}
\end{array}
\]

c. \[
\begin{array}{c}
\text{F} \\
\text{C} \\
\text{O} \\
\text{H}
\end{array}
\]

7. Which of the following could act as a Lewis acid?

a. \(\text{AlCl}_4^- \)
 b. \(\text{NH}_3 \)
 c. \(\text{NH}_4^+ \)
 d. \(\text{Cl}^- \)
 e. \(\text{AlCl}_3 \)

8. The titration of which of the following will have a pH of 7 at the equivalence point?

a. a weak acid with a strong base
b. a weak base with a strong acid
c. a weak base with a weak acid
d. a strong acid with a strong base

9. Which of the following combinations could NOT be used to form a buffer solution?

a. \(\text{NH}_3 \) and \(\text{NH}_4\text{Cl} \)
b. \(\text{Ba(ClO}_4)_2 \) and \(\text{HClO}_4 \)
c. \(\text{KNO}_2 \) and \(\text{HNO}_2 \)
d. \(\text{HC}_2\text{H}_3\text{O}_2 \) and \(\text{Ca(C}_2\text{H}_3\text{O}_2)_2 \)
e. \(\text{CH}_3\text{NH}_2 \) and \(\text{CH}_3\text{NH}_3\text{Br} \)

10. At the equivalence point of a weak base-strong acid titration the pH will be:

a. equal to 7
b. greater than 7
c. less than 7
d. impossible to tell without further information

\[
pH = pK_a + \log \left(\frac{[\text{base}]}{[\text{acid}]} \right)
\]
Problems. Point totals are indicated in parentheses to the right of the problem number. Show your work to receive full credit.

11. (5 points) Find the pH, pOH, $[H^+]$, and $[OH^-]$ for a 0.15 M solution of NH$_4$NO$_3$. K_b for NH$_3$ is 1.8×10^{-5}.

12. (5 points) Find the pH, pOH, $[H^+]$, and $[OH^-]$ for a 0.25 M solution of Ba(BrO)$_2$. K_a for HBrO is 2.5×10^{-9}.

13. (5 points) Find the pH of a solution containing 0.00500 M NaClO and 0.0125 M HClO. K_a for HClO is 2.3×10^{-11}.

\[
pH = pK_a + \log \frac{[base]}{[acid]}
\]
14. (8 points) A flask contains 35.00-mL of 0.125 M HCN. The flask is titrated with a 0.175 M solution of KOH. Find the pH in the flask at the following points in the titration. Show your work. K_a for HCN is 4.9×10^{-10}.

a. Before the titration starts:

$$pH = pK_a + \log \frac{[base]}{[acid]}$$

b. After the addition of 15.00-mL of the KOH solution.
c. (Problem 14 continued) At the equivalence point

d. After 10.00-mL of the KOH solution have been added past the equivalence point.

\[pH = pK_a + \log \frac{[base]}{[acid]} \]
\[pH = pK_a + \log \frac{[\text{base}]}{[\text{acid}]} \]