CHEM 1364 (Day)
Test #4
Spring 2010 (Buckley)

1. (4 points) State the number of σ and π bonds in each of the following structures.

 a. Number of σ bonds = 6 Number of π bonds = 2

 ![Structure a]

 b. Number of σ bonds = 8 Number of π bonds = 4

 ![Structure b]

2. (10 points) Draw Lewis structures for the following species and indicate the formal charge on each atom.

 a. NO_3^-

 ![Lewis Structure a]

 b. IF_5

 ![Lewis Structure b]
3. (25 points) State the number of electron domains, the electron-domain geometry, the molecular geometry, the polarity (polar or nonpolar), and the hybridization about the central atom for each of the following species.

<table>
<thead>
<tr>
<th>Species</th>
<th># electron-domains</th>
<th>Electron-domain geometry</th>
<th>Molecular geometry</th>
<th>Polar or Nonpolar? (P/NP)</th>
<th>Hybridization</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{F} - \text{N} - \text{H}$</td>
<td>4</td>
<td>Tetrahedral</td>
<td>P</td>
<td>P</td>
<td>sp^3</td>
</tr>
<tr>
<td>$\text{N} = \text{N} - \text{O}$</td>
<td>2</td>
<td>Linear</td>
<td>P</td>
<td>P</td>
<td>sp</td>
</tr>
<tr>
<td>$\left[\text{O} - \text{B} - \text{O} \right]$</td>
<td>4</td>
<td>Tetrahedral</td>
<td>Tetrahedral</td>
<td>NP</td>
<td>sp^3</td>
</tr>
<tr>
<td>$\text{O} = \text{O} - \text{O}$</td>
<td>3</td>
<td>Trigonal Planar</td>
<td>Bent</td>
<td>P</td>
<td>sp^2</td>
</tr>
<tr>
<td>$\text{F} = \text{S} - \text{F}$</td>
<td>4</td>
<td>Tetrahedral</td>
<td>Bent</td>
<td>P</td>
<td>sp^3</td>
</tr>
</tbody>
</table>
4. (5 points) 75.0-g of Ne gas is confined to a container of volume 45.5-L at a temperature of 100 °C. What is the pressure of the Ne? **SHOW YOUR WORK.**

\[P = \frac{nRT}{V} = \frac{(3.75 \text{ mol})(0.08206 \text{ L atm/mol K})(373 \text{ K})}{45.5 \text{ L}} \]

\[P = 2.55 \text{ atm} \]

5. (5 points) The temperature of the container in Problem 4 is changed to 275 °C. What is the new pressure of the Ne? **SHOW YOUR WORK.**

\[P_1 = 2.55 \text{ atm} \]
\[T_1 = 100 °C = 373 \text{ K} \]
\[T_2 = 275 °C = 548 \text{ K} \]

Here \(V_1 = V_2 \) so

\[\frac{P_1}{T_1} = \frac{P_2}{T_2} \]

\[\frac{2.55 \text{ atm}}{373 \text{ K}} = \frac{P_2}{548 \text{ K}} \]

\[P_2 = \frac{2.55 \text{ atm} \times 548 \text{ K}}{373 \text{ K}} = 3.75 \text{ atm} \]

6. (5 points) A 55.0-L vessel contains 4.52 mol of CO₂, 2.35 mol of O₂, and 5.12 mol of N₂ at a temperature of 45.0 °C. Find the total gas pressure in the vessel and the partial pressures of each of the components in the vessel.

\[\text{Total mol} = N_{\text{CO}_2} + N_{\text{O}_2} + N_{\text{N}_2} = 4.52 \text{ mol} + 2.35 \text{ mol} + 5.12 \text{ mol} = 11.99 \text{ mol} \]

\[T = 45.0 °C = 318 \text{ K} \]
\[V = 55.0 \text{ L} \]
\[n = 11.99 \text{ mol} \]

PARTIAL PRESSURES

\[\text{Mole fractions: } \]
\[X_{\text{CO}_2} = \frac{4.52 \text{ mol}}{11.99 \text{ mol}} = 0.377 \]
\[X_{\text{O}_2} = \frac{2.35 \text{ mol}}{11.99 \text{ mol}} = 0.196 \]
\[X_{\text{N}_2} = \frac{5.12 \text{ mol}}{11.99 \text{ mol}} = 0.427 \]

\[P_{\text{CO}_2} = 0.377 \times (5.69 \text{ atm}) = 2.14 \text{ atm} \]
\[P_{\text{O}_2} = 0.196 \times (5.69 \text{ atm}) = 1.12 \text{ atm} \]
\[P_{\text{N}_2} = 0.427 \times (5.69 \text{ atm}) = 2.43 \text{ atm} \]
7. (9 points) Air bags in cars generate N\textsubscript{2} quickly to inflate using the chemical reaction:

\[2 \text{NaN}_3 (s) \rightarrow 2 \text{Na} (s) + 3 \text{N}_2 (g) \]

Let's work a problem step-by-step to see how many grams of NaN\textsubscript{3} would be required to generate 40.0-L of N\textsubscript{2} at a pressure of 1.25-atm and a temperature of 28.0 °C. **SHOW YOUR WORK**

a. How many mol of N\textsubscript{2} are to be generated in this problem?

\[\theta V = nRT \]
\[n = \frac{\theta V}{RT} = \frac{(1.25 \text{ atm})(40.0 \text{ L})}{0.08206 \text{ atm} \cdot \text{mol} \cdot \text{K}} = 2.02 \text{ mol N}_2 \]

b. For the number of mol of N\textsubscript{2} you found in part a, how many mol of NaN\textsubscript{3} would be required to form that much N\textsubscript{2}?

\[2 \text{ mol NaN}_3 \times \frac{2 \text{ mol NaN}_3}{3 \text{ mol N}_2} = 1.35 \text{ mol NaN}_3 \]

c. Based on your answer to part b, how many grams of NaN\textsubscript{3} are required to generate the number of mol of N\textsubscript{2} indicated in part a?

\[? \text{ g NaN}_3 = \frac{1.35 \text{ mol NaN}_3}{65 \text{ g NaN}_3} \times 1 \text{ mol NaN}_3 = 87.5 \text{ g NaN}_3 \]

Potentially Useful Information for this test:

PV = nRT

\[\frac{PV_1}{T_1} = \frac{PV_2}{T_2} \]

\[R = 0.08206 \text{ L} \cdot \text{atm/mol} \cdot \text{K} \]

0.08206