I. Overview

A. Terms
- **sensation** - conscious or subconscious awareness of internal or external stimuli
 Requires:
 - stimulus → receptor → conduction pathway → CNS interpretation
 ex: pain, blood pressure
- **perception** - conscious awareness and interpretation of sensation
- **sensory modality** – distinct “type” of sensation
 -- one neuron carries only 1 modality
 -- avoids confusion

B. Classification is by multiple criteria
1. **By modality (stimulus detected)**
 - **mechanoreceptors** -- respond to pressure or stretching
 Ex: tactile corpuscles (touch)
 Hair cells in spiral organ (hearing)
 - **thermoreceptors** – free-nerve endings
 - **nociceptors** (pain – but not the same) – free-nerve endings
 “harm”
 - photoreceptors – rods & cones in retina (light)
 - chemoreceptors – taste buds; glucose receptors in pancreas

2. **By distribution**
 - **general senses** (somesthetic) – widely distributed over body
 - simple structure
 - **somatic**: touch, temperature, pain, body position
 or
 - **visceral**: information from internal organs
 - **special senses** – limited to one or two sites in head only
 - relatively complex structure
 - smell, taste, vision, hearing, equilibrium, & vomeronasal organ

3. **By origin of stimulus**
 - **exteroceptors** → at or near body surface
 -- provide information about external environment
 -- Ex: retina, taste buds, tactile corpuscles
- interoceptors → detect internal stimuli
 -- provide information about internal environment
 Ex: stretch receptors/pH detectors in blood vessels
 *often unconscious sensations, may be felt as pain or pressure

- proprioceptors → in muscle, joints, tendons, and inner ear
 “one’s own” ← -- provide info about body position and movement
 Ex: stretch receptors in tendons, hair cells in semicircular ducts

II. General senses
- cutaneous sensation as an example: Fig. 17.1 & 5.1
 1. tactile (Meissner’s) corpuscles -- located in dermal papillae
 - sketch -
 -- very small
 -- branching dendrites throughout an oval
 mass of flattened Schwann cells
 -- detect light touch

 2. lamellated (Pacinian) corpuscles -- located in deep dermis and subcutaneous
 - sketch -
 (also in viscera & around joints)
 -- larger (1-2 mm)
 -- c.t. capsule, nervous core (like an onion)
 -- respond to pressure & vibrations

 3. Hair root plexus -- free nerve endings wrapped around root

III. Chemical senses
A. Gustation - KNOW FIG. 17.5 b & d
 1. Location: taste buds - ~ 4,000
 - tongue, soft palate, pharynx
 2. Cell types - all epithelial cells
 a. taste (gustatory) cells are actual receptors for taste
 - not neurons
 - live ~ 7-10 days
 - taste hairs (microvilli) protrude into taste pore
 b. supporting cells –
 c. basal cells - generate new gustatory cells
 d. dendrites from CN VII, IX, or X synapse at base of taste cells
B. Olfaction - **KNOW FIG. 17.7** (except detail in olfactory bulb)

1. Location: olfactory epithelium -- 5 cm²
 -- superior nasal septum and concha

2. Cell types
 a. olfactory cells are receptors
 - bipolar neurons, live ~ 60 days
 - dendrites called olfactory hairs, respond to odorants
 - axons form fascicles (collectively CN I) that extend through olfactory foramina of cribriform plate
 b. supporting cells - columnar epithelium
 c. basal cells- stem cells producing new olfactory receptor cells (UNUSUAL)

C. Vomeronasal organ (VNO)

1. Location:
 - 2 small cigar-shaped sacs at either side base of nasal septum
 - pit communicates with nasal cavity

2. Cell types
 a. receptor cells
 - bipolar neurons with microvilli
 - don’t respond to odorants, but do respond to other chemicals-pheromones?
 b. at least 2 other cells types present

-- If a tree falls in a forest does it make a sound?

IV. Vision

A. Accessory structures → **KNOW Fig. 17.20a**

1. protective bony orbit

2. eyelids (*palpebrae*), eyebrows and eyelashes shade and protect
 -- medial & lateral *commissures* → Fig. 17.19
 - orbicularis oculi – closes
 - levator palpebrae superioris – opens

3. conjunctiva is mucous membrane lining eyelid (*palpebral*) and anterior eyeball (*bulbar*)
 - inflammation = pinkeye (*conjunctivitis*)
 - blood vessels dilate = bloodshot eyes

4. **lacrimal apparatus** -
 tear
 - *lacrical gland* produces tears laterally,
 - drain medially via *nasolacrimal duct* into nasal cavity

5. extrinsic eye muscles **KNOW Fig. 17.21**
 - any eye movement requires coordinated activity of all six
 - KNOW names and cranial nerve to each:

<table>
<thead>
<tr>
<th>lateral rectus</th>
<th>superior rectus</th>
<th>superior oblique & trochlea</th>
</tr>
</thead>
<tbody>
<tr>
<td>medial rectus</td>
<td>inferior rectus</td>
<td>inferior oblique</td>
</tr>
</tbody>
</table>
B. Anatomy of the eyeball **KNOW** Fig. 17.22 & 17.23

-- 3 layers

1. Fibrous layer (tunica fibrosa) - outermost
 - sclera – “whites” of eye
 -- posterior $\frac{2}{3}$
 -- fibrous c.t. \Rightarrow protective shell; maintains focal length
 - cornea -- transparent (avascular)
 -- anterior $\frac{1}{3}$
 -- curvature helps focus light

2. Vascular layer (tunica vasculosa or uvea) - middle
 - choroid - vascular membrane lining sclera
 \leftarrow provides internal blood supply
 - darkly pigmented \Rightarrow absorbs light, prevents reflection
 - ciliary body
 - ciliary muscle – the anterior, donut-like ring of muscle which alters lens thickness for focusing
 - ciliary processes – vascular projections that secrete aqueous humor
 - iris - anterior colored flap from ciliary body that defines pupil
 - pupillary constrictor = circular muscle
 - pupillary dilator = radial muscle
 - two pigmented layers (Iris was the Greek goddess of the rainbow)
 - functions as adjustable “light shade”

3. Nervous layer (tunica interna or retina) - innermost
 - lines posterior $\frac{2}{3}$
 - ora serrata -- jagged anterior margin of retina
 - pigment epithelium -- layer adjacent to choroid
 - neural portion - highly organized layers of cells
 * photoreceptor layer -- rods (black and white)
 - cones (color)
 * ganglion cell layer -- axons form CN II
 NOTE Fig 17.27b: light goes “into” retina; visual information comes “out” of retina

 - macula lutea - pigmented center of retina (Fig. 17.25)
 $\text{spot} \quad \text{yellow}$
 - fovea centralis - depression in center of macula lutea.
 -- has only cones \Rightarrow point of sharpest vision
 - optic disc (blind spot) - point of exit of CN II
 - no photoreceptors
4. Interior of eyeball
 - lens divides into - anterior cavity with aqueous humor
 \[\downarrow\]
 - posterior cavity (vitreous chamber) with vitreous humor (vitreous body)
 held in position by suspensory ligament (fig. 17.24)

 - iris divides anterior cavity into
 - posterior chamber -- produces aqueous humor
 - anterior chamber -- reabsorbs it every 90 minutes

C. Visual pathway – Fig. 17.30
 optic nerves (ganglion cell axons)
 \[\downarrow\]
 optic chiasm (1/2 cross to other side)
 \[\downarrow\]
 optic tracts
 \[\downarrow\]
 thalamus
 \[\downarrow\]
 cerebrum

V. Hearing and balance
 -- Ear contains receptors for 2 special senses
 - hearing (audition)
 - balance (equilibrium)

A. Outer (external) ear – KNOW FIG. 17.10
 - designed to collect and direct sound waves

 1. Pinna (auricle) - elastic cartilage and skin
 2. external acoustic meatus (auditory canal)
 - skin-lined bony tunnel with ceruminous & sebaceous glands & hair

B. Middle ear (tympanic cavity) \[\rightarrow\] size of an aspirin
 1. separated from outer ear by tympanic membrane (eardrum)
 - thin partition of fibrous c.t.
 2. connected with nasopharynx by auditory (pharyngotympanic or eustachian) tube
 3. contains 3 ossicles \[\rightarrow\] transmits sound waves to inner ear
 * malleus (hammer) - connected to eardrum
 \[\downarrow\]
 * incus (anvil)
 \[\downarrow\]
 * stapes (stirrup) - attached to oval window
 4. two skeletal muscles dampen vibrations
 *tensor tympani
 *stapedius
C. Internal (inner) ear
 - complex structure: **KNOW Fig. 17.11b & c** (with some exceptions)

1. **bony** labyrinth - series of cavities in temporal bone
 "maze"

2. **membranous** labyrinth - series of fluid-filled sacs lying within bony labyrinth

3. perilymph - fluid outside membranous
4. endolymph - fluid inside membranous

 Bony labyrinth \rightarrow contains \rightarrow **Membranous** labyrinth

 - semicircular canals
 - vestibule
 - utricle and saccule
 - cochlea

5. membranous labyrinth contains patches of hair cells (**epithelial**), the receptor cells for hearing and equilibrium
 - long microvilli at apex
 - nerve fibers synapse at base \rightarrow CN VIII vestibulocochlear
 balance \leftrightarrow hearing

 Hair cells in

 - ampulla of semicircular ducts (6) \rightarrow **Stimulated by**
 changes in rate and direction of movement (angular acceleration)

 - macula of utricle and saccule (4) \rightarrow **Detect**
 gravity (body position with respect to gravity)
 linear acceleration **dynamic** equilibrium

 - spiral organ of Corti in cochlear duct \rightarrow vibrations sound

D. Thin bony partition separates inner ear from middle: 2 holes play a role in hearing:
 - **oval window** - stapes fills
 - **round window** – covered by secondary tympanic membrane;
 \checkmark dissipates pressure