Polyprotic Acids

- Acids that can donate more than 1 proton per molecule
 - Strong acid – H₂SO₄
 - Several weak acids
- ‘Well behaved’ dissociation
 - For most cases we can safely assume that protons are removed sequentially
 - All molecules will have their first proton removed before any will have the second removed, etc...

Polyprotic Acids

- Consider the dissociation of the weak polyfunctional acid H₂A
 - First step: H₂A ⇌ H⁺ + HA
 - \(K_1 = \frac{[H^+][HA]}{[H_2A]} \)
 - Subscript 1 indicates the first proton removed
 - Second Step: HA ⇌ H⁺ + A²⁻
 - \(K_2 = \frac{[H^+][A^-]}{[HA]} \)
 - Subscript 2 indicates the second proton removed
 - For higher order polyprotics, subscript indicated the number of the proton removed from the ‘parent’ molecule

Polyprotic Acids

- Possible combinations
 - H₂A
 - Since the protons dissociate sequentially, this is like any other weak acid
 - Calculate [H⁺] like any monoprotic acid using \(K_1 \).
 - H₂A / HA⁻
 - Buffer
 - Henderson-Hasselbalch using pK₁
 - H₂A / A²⁻
 - Will react
 - \(H_2A + A²⁻ \rightarrow 2HA \)
 - May have either of the two buffers OR HA

Homework

- 7-10, 12, 14, 18, 20, 27
Acid Salt

- Partially neutralized polyprotic acid
 - Only ‘new’ situation relative to monoprotic acids
 - Can act as either an acid or a base
 - $[H^+]$ a function of K_a (acting as an acid) and K_b (acting as a base)
 - Let $K_{n+1} = K_a$ as an acid, then $K_b = K_w / K_a$
 - For a diprotic acid, $K_a = K_{1n}$ and $K_{n+1} = K_{2n}$

- Deriving
 \[
 [H^+] = \frac{K_{n+1}C_{HA} + K_w}{1 + \frac{C_{HA}}{K_a}}
 \]
 - If C_{HA} / K_1 is much greater than 1, and also $K_{n+1}C_{HA}$ is much greater than K_w, then
 \[
 [H^+] \approx \sqrt{K_a K_{n+1}}
 \]

Acid Salt

- Final equation shows that under the assumed conditions, $[H^+]$ (and therefore pH) is independent of the concentration of the acid salt

Titration of Polyprotic Acids

![Polyprotic Titration Curve](image)

Legend

- **Point A**
 - Only a weak acid
 - Treat like any monoprotic acid using K_1

- **Region B** (blank)
 - First buffer region
 - pH from pK_1

- **Point C**
 - Acid Salt

Legend

- **Region D**
 - Second buffer region
 - Use pK_2 to calculate pH

- **Point E**
 - Conjugate base of ‘acid salt’
 - $K_b = K_w / K_2$

- **Region F**
 - Strong base
Calculations

- Consider the titration of 25.0 mL of 0.10 M o-phthalic acid with 0.10 M NaOH
 - Assume the formula of the acid is H₂A

Before any titrant is added

\[[H^+] = \frac{(C_a + K_a)}{\sqrt{(C_a + K_a)^2 + 4K_aC_{Na}}} \]

\[[H^+] = \frac{(0.5 + 1.12 \times 10^{-12}) + \sqrt{(0.5 + 1.12 \times 10^{-12})^2 + 4 \times 1.12 \times 10^{-12} \times \frac{2.0}{30}}} {2} \]

\[[H^+] = 3.51 \times 10^{-12}; \text{pH} = 2.46 \]

Calculating with the 'short' form:

\[\text{pH} = \text{pK}_a + \log\left(\frac{a}{[H^+]}\right) = 2.95 + \log(0.5/2.0) \]

\[\text{pH} = 2.35 \text{ (significant difference)} \]

Titration of 25.0 mL of 0.10 M o-phthalic acid with 0.10 M NaOH

After 5.00 mL of titrant is added

\[\text{HA} + \text{OH}^{-} \rightleftharpoons \text{A}^{-} + \text{H}_2\text{O} \]

I	2.50	0.50	0	~ ~
Δ	-0.50	-0.50	+0.50	~ ~
F	2.00	~0	0.50	~ ~

Buffer, but with \(K_a > 10^{-3} \), we have to use the quadratic form for \([H^+]\)

Titration of 25.0 mL of 0.10 M o-phthalic acid with 0.10 M NaOH

After 25.0 mL of titrant is added

\[\text{HA} + \text{OH}^{-} \rightleftharpoons \text{A}^{-} + \text{H}_2\text{O} \]

I	2.50	2.50	0	~ ~
Δ	-2.50	-2.50	+2.50	~ ~
F	~0	~0	2.50	~ ~

Acid salt

Titration of 25.0 mL of 0.10 M o-phthalic acid with 0.10 M NaOH

After 35.0 mL of titrant is added

\[\text{HA} + \text{OH}^{-} \rightleftharpoons \text{A}^{-} + \text{H}_2\text{O} \]

I	2.50	3.50	0	~ ~
Δ	-2.50	-2.50	+2.50	~ ~
F	~0	1.00	2.50	~ ~

THEN

\[\text{A}^{-} + \text{OH}^{-} \rightleftharpoons \text{A}^{2-} + \text{H}_2\text{O} \]

I	2.50	1.00	0	~ ~
Δ	-1.00	-1.00	+1.00	~ ~
F	1.50	~0	1.00	~ ~
Titration of 25.0 mL of 0.10 M \(\alpha \)-phthalic acid with 0.10 M NaOH

- **Buffer with \(\text{HA}^- / \text{A}^2^- \)**
 - \(\text{pH} = \text{pK}_a + \log (b/a) \)
 - \(\text{pH} = 5.41 + \log (1.00 / 1.50) \)
 - \(\text{pH} = 5.23 \)

Titration of 25.0 mL of 0.10 M \(\alpha \)-phthalic acid with 0.10 M NaOH

- **Only species affecting the pH is \(\text{A}^2^- \)**
 - \(K_b = K_W / K_a \)
 - \(C_b = 2.5 / 75 \)

 \[
 [\text{OH}^-] = \sqrt{\frac{1.0 \times 10^{-14}}{3.91 \times 10^{-14}}} \times \left(\frac{2.5}{75}\right)
 \]

 \([\text{OH}^-] = 9.23 \times 10^{-4}; \text{pOH} = 5.03 \)

 \(\text{pH} = 14.00 - \text{pOH} = 8.97 \)

Titration of 25.0 mL of 0.10 M \(\alpha \)-phthalic acid with 0.10 M NaOH

- **After 50.0 mL of titrant is added**

 \[
 \text{HA} + \text{OH}^- \rightleftharpoons \text{A}^2^- + \text{H}_2\text{O}
 \]

 | I | 2.50 | 5.00 | 0 | ~ |
 | Δ | 2.50 | 2.50 | +2.50 | ~ |
 | F | ~0 | 2.50 | 2.50 | ~ |

 THEN

 \[
 \text{HA} + \text{OH}^- \rightleftharpoons \text{A}^2^- + \text{H}_2\text{O}
 \]

 | I | 2.50 | 2.50 | 0 | ~ |
 | Δ | 2.50 | 2.50 | +2.50 | ~ |
 | F | ~0 | 2.50 | 2.50 | ~ |

Titration of 25.0 mL of 0.10 M \(\alpha \)-phthalic acid with 0.10 M NaOH

- **After 75.0 mL of titrant is added**

 \[
 \text{HA} + \text{OH}^- \rightleftharpoons \text{A}^2^- + \text{H}_2\text{O}
 \]

 | I | 2.50 | 7.50 | 0 | ~ |
 | Δ | 2.50 | 2.50 | +2.50 | ~ |
 | F | ~0 | 5.00 | 2.50 | ~ |

 THEN

 \[
 \text{HA} + \text{OH}^- \rightleftharpoons \text{A}^2^- + \text{H}_2\text{O}
 \]

 | I | 2.50 | 5.00 | 0 | ~ |
 | Δ | 2.50 | 2.50 | +2.50 | ~ |
 | F | ~0 | 2.50 | 2.50 | ~ |

Sulfuric Acid pH

- **Unique situation**
 - First proton is completely dissociated (strong acid)
 - Second proton comes from a weak acid (partially dissociated)
 - Dissociation of the first proton affects the amount of dissociation for the second proton

- **What is the pH for a 0.010 M solution of sulfuric acid?**

Titration of 25.0 mL of 0.10 M \(\alpha \)-phthalic acid with 0.10 M NaOH

- **After 50.0 mL of titrant is added**

 \[
 \text{HA} + \text{OH}^- \rightleftharpoons \text{A}^2^- + \text{H}_2\text{O}
 \]

 | I | 2.50 | 5.00 | 0 | ~ |
 | Δ | 2.50 | 2.50 | +2.50 | ~ |
 | F | ~0 | 2.50 | 2.50 | ~ |

 THEN

 \[
 \text{HA} + \text{OH}^- \rightleftharpoons \text{A}^2^- + \text{H}_2\text{O}
 \]

 | I | 2.50 | 5.00 | 0 | ~ |
 | Δ | 2.50 | 2.50 | +2.50 | ~ |
 | F | ~0 | 2.50 | 2.50 | ~ |

Titration of 25.0 mL of 0.10 M \(\alpha \)-phthalic acid with 0.10 M NaOH

- **After 75.0 mL of titrant is added**

 \[
 \text{HA} + \text{OH}^- \rightleftharpoons \text{A}^2^- + \text{H}_2\text{O}
 \]

 | I | 2.50 | 7.50 | 0 | ~ |
 | Δ | 2.50 | 2.50 | +2.50 | ~ |
 | F | ~0 | 5.00 | 2.50 | ~ |

 THEN

 \[
 \text{HA} + \text{OH}^- \rightleftharpoons \text{A}^2^- + \text{H}_2\text{O}
 \]

 | I | 2.50 | 5.00 | 0 | ~ |
 | Δ | 2.50 | 2.50 | +2.50 | ~ |
 | F | ~0 | 2.50 | 2.50 | ~ |
Sulfuric Acid pH
Assume 1 mL of solution, then \(M = \text{mmol acid} \)
\[
\begin{align*}
\text{H}_2\text{SO}_4 & \rightarrow \text{HSO}_4^- + \text{H}^+ \\
I & 0.010 \\
\Delta & -0.010 \\
F & \sim 0 \\
\text{THEN} & \\
\text{HSO}_4^- & \rightarrow \text{SO}_4^{2-} + \text{H}^+ \\
I & 0.010 \\
\Delta \cdot x & +x +x \\
F & 0.010 \cdot x \quad x \quad 0.010+x
\end{align*}
\]

\[K_2 = [\text{H}^+] [\text{SO}_4^{2-}] / [\text{HSO}_4^-]; \]
\[K_2 = 0.0102 \]
\[= (0.010+x)(x) / (0.010 - x) \]
\[(0.0102)(0.010 - x) = (0.010+x)(x) \]
\[1.02 \times 10^{-4} - 0.0102x = x^2 + 0.010x \]

Rearranging:
\[x^2 + 0.010x + 0.0102x - 1.02 \times 10^{-4} = 0 \]

Quadratic – solve for \(x \)
\[x = 0.0042, [\text{H}^+] = 0.010+0.0042 = 0.0142 \]

\[\text{pH} = 1.85 \]

Assume one proton dissociates, pH = 2.00
Assume both protons dissociate, pH = 1.70