General Physical Science

Chapter 19
The Atmosphere

Composition and Structure

- Composition of the atmosphere
 - Mainly N\textsubscript{2} and O\textsubscript{2}
 - Main other constituents: Ar, CO\textsubscript{2}, H\textsubscript{2}O
- Animals consume O\textsubscript{2} and release CO\textsubscript{2}.
- Plants consume CO\textsubscript{2} and release O\textsubscript{2}.
 - Photosynthesis
 - Chlorophyll
 - Over 50% in oceans
- Crepuscular Rays

Composition and Structure

- Gravitational attraction of atmosphere greatest near surface of the Earth.
 - Air density greatest at surface
 - Air pressure greatest at surface
 - Pressure decreases at height increases
 - No clearly defined upper limit
 - ½ of the atmosphere below 7 miles
 - 99% below 19 miles
 - 200 mi above, about 1 molecule/mi3
 - At surface, 112,000,000,000,000,000,000,000,000,000,000,000 molecules in the same volume!
Temperature Variations

• Regions based on change in temperature.
 – Troposphere
 • nearest the Earth
 • Up to about 16 km (10 mi)
 • Temperature decreases as altitude increases
 – About 3.5°F per 1000 ft. (6.5°C per km)
 • Atmospheric conditions constantly changing
 – Weather
 • About 80% of atmosphere
 • At the top - Temperature about 45 - 50°C below zero.

Regions of the Atmosphere

• Stratosphere
 – Troposphere and stratosphere about 99.9% atmospheric mass.
 – Non-uniform increase to about 50 km (30 mi)
• Mesosphere
 – Uniform decrease in temperatures again.
 – 50 km to 80 km (30 mi to 50 mi)
• Thermosphere
 – Temp increases, dependent on Solar activity.

Vertical Structure of the Atmosphere
Ozone and Ion concentrations

- **Ozone (O\textsubscript{3})**
 - Formed by reactions of oxygen
 - \(O\textsubscript{2} + \text{energy} \rightarrow O + O\)
 - \(O + O\textsubscript{2} \rightarrow O\textsubscript{3}\)
- Dissociation energy comes from the Sun.
- Optimum conditions about 30 km (20 mi)
- \(O\textsubscript{3}\) concentration decreases to about 70 km (45 mi)

Ozone

- Region below 75 km known as ozonosphere
 - Roughly corresponds to stratosphere.
 - Formed by reaction of molecular oxygen
 - \(O\textsubscript{2} + \text{energy} \rightarrow O + O; \text{then} O + O\textsubscript{2} \rightarrow O\textsubscript{3}\)
 - Energy for temp increase comes form ozone absorbing uv radiation!
 - Causes \(O + O\textsubscript{2} \rightarrow O\textsubscript{3}\) and \(O + O \rightarrow 2O\textsubscript{2}\)
 - Creates balance of ozone / oxygen in atmosphere.
- Pollutant at the Earth’s surface
 - Also relatively unstable at the surface.

Ozone and Ion Concentrations

- Serves as ‘umbrella’ for uv radiation.
 - Greatly decreases uv radiation that makes it to the surface of the Earth.
- Upper atmosphere:
 - \(N\textsubscript{2} + \text{energy} \rightarrow N\textsubscript{2}^\ast + e\)
 - Ionosphere
 - Made up of 3 layers
Ionosphere

- **D layer**
 - Absorbs some lower frequency radio waves
 - Allows higher (AM and FM) frequencies to pass.

- **E and F layer**
 - Reflect AM
 - Allow FM to pass

Ionosphere

- Can use for long distance communication.
 - Not as reliable as satellite communication
 - Ionosphere layer will vary with solar activity.

Ionospheric Effects

- *Aurora Borealis*
 - Northern lights
 - Recombination of ions with electrons
 - Directed by Earth’s magnetic field
 - *Aurora Australis*
Composition and Structure

• Learning Goals
 – Identify the composition of air.
 – Describe how the atmosphere is divided into regions.
• Questions: 1 - 6
• Exercises: 1, 3

Atmospheric Energy Content

• Sun
 – Main source of energy
 – Insolation
 • incoming solar radiation
 – Earth is tilted and orbits the Sun.
 • leads to uneven distribution of insolation
 • Seasons
 – Only about 50% of insolation reaches the surface.

Atmospheric Energy Content

• The atmosphere is primarily heated by the Earth!
 – About 1/3 (33%) of the insolation reflected back into space
 • Albedo
 • Values in Table 19.2
 – Scattering
 • Rayleigh scattering
 • Wavelength dependent (1/λ^4)
 • Longer wavelength - less scattering
 • Blue Sky/Red Sunsets!
Atmospheric Energy Content

• About 15% absorbed by ozone
• About 50% to the surface
 – This energy then heats the atmosphere
 – 3 processes
 • Absorption of re-radiation
 • Latent heat of condensation
 • Convection

Atmospheric Energy Content

• Absorption of re-radiation
 – Wavelength dependent on temperature
 – Earth radiates in the long infrared wavelengths
 – Absorbed by water vapor and CO₂.
 • Water most important
 – Leads to the ‘Greenhouse Effect’

The Greenhouse Effect
Atmospheric Energy Content

- Latent heat of condensation
 - Earth’s surface about 70% water
 - Heat to surface causes evaporation
 - Evaporated water condenses
 - Rain, fog, clouds, dew, etc…
- Convection
 - Air near surface heated
 - Rises

Atmospheric Energy Content

- Learning Goals
 - Describe how insolation is distributed in the atmosphere.
 - Explain why the sky is blue and sunsets are red.
 - Describe the greenhouse effect and its impact on Earth’s temperature.
- Questions: 7-12
Atmospheric Measurements and Observations

• We measure 5 fundamental properties of the atmosphere.
 – Temperature
 – Pressure
 – Humidity
 – Wind Speed and Direction
 – Precipitation

Atmospheric Measurements

• Temperature
 – Measure air temperature
 – Do not want direct heating of the thermometer
 • Measure ‘in the shade’

• Pressure
 – Force per area
 – ‘Standard’ pressure 14.7 lb/in²
 • Due to the weight of the atmosphere

Pressure

• Galileo
 – Trying to get water to top of building using vacuum
 • Same principle as a straw
 • Could only get water about 10 m

• Torricelli
 – Discovered mercury would be lifted only a given distance in an evacuated tube.
Barometer

- Device for measuring pressure
- Height of column dependent on the density of the liquid
 - Water higher than Hg
 - Water less dense than Hg

Types of Barometers

- Aneroid
 - pointer driven by a metal diaphragm.
- Liquid
 - measure height of column.
- Altimeter
 - Aneroid barometer to determine altitude

Pressure

- Typical Measurements (standard pressure)
 - 1.013×10^5 N / m² (SI units)
 - atmospheres (1 atm)
 - millimeters of mercury (760 mm Hg)
 - inches of mercury (29.92 in Hg)
 - pounds per square inch (14.7 psi)
 - bar (1.013 bar)
 - millibar (1013 mb)
Pressure Changes

- Ears most sensitive
 - Inner ear does not equalize pressure as quickly as outer ear.
 - Things to help inner ear
 • Chewing
 • Valsalva
- Many airplanes are pressurized
 - Pressure differential
 - Typical airliner pressurized to an altitude of 8,000 ft.

Humidity

- Measurement of the amount of water vapor in the air
- Absolute
 - mass of water per unit volume
 - 4.5 grains / ft³
- Relative
 - Ratio of how much is there to how much could be there

Relative Humidity

- Dependent on temperature
 - Can be saturated with water vapor
 - Dewpoint
- Psychrometer
 - Uses dry bulb and wet bulb
 - Temp difference due to evaporation
 - Table I - Appendix VIII
Heat Index
- Body is cooled by evaporation of sweat
- The higher the relative humidity, the slower the evaporation.

Atmospheric Measurements
- Wind speed
 - anemometer
- Wind direction
 - wind vane
- Precipitation
 - Rain gauge
 - Snow
 - melted to determine moisture content

Weather Observations
- Radar
 - Reflected radio waves
- Doppler Radar
 - Reflected radio waves with measurement of Doppler shift
 - Increased awareness of tornado
- Airport
 - Windshear
Weather Observations

- Weather Satellites
 - GOES
 - Geostationary Orbiting Environmental Satellites
 - Continuous coverage of the Earth's surface
 - Images often combined with radar/Doppler radar images to get a picture of the weather.
Atmospheric Measurements and Observations

• Learning Goals
 – Identify some important atmospheric measurements and the instruments used to make them.
 – Demonstrate how the relative humidity may be found from psychrometric readings.
 – Distinguish between conventional and Doppler radar.
• Questions: 13 - 19
• Exercises: 5 – 11 odd

Air Motion

• Wind
 – Horizontal movement of air.
• Air currents
 – Vertical movement of air
 • updrafts and downdrafts
• 2 main causes for air movement
 – Gravity
 – Pressure changes due to temperature variations.

Air Motion

• Gravity
 – Vertically downward movement of air
 – Constant presence
 • can be overridden by other forces
• Variations in temperature
 – Governed by the Gas Laws (Chap. 11)
 • Pressure is directly proportional to temperature.
 • Aerosol can in a fire
Air Motion

• Variation in Temperature
 – Variation in pressure leads to an unbalanced force
 – Air moves from high pressure to low pressure

• Isobars
 – Regions of the same pressure
 – Wind flow is ideally perpendicular to the isobars

Convection Cycle

• Thermal circulation of air
• Sea Breeze
• Land Breeze
 – Note name describes where wind comes from.
 – North wind - comes from the North

Secondary Forces

• Coriolis
 – Due to the rotation of the Earth
 – Pseudoforce
 • Only appears to occur because our frame of reference is moving!
 – Northern Hemisphere - objects are deflected to the right
 – Southern Hemisphere - deflection to the left
Secondary Forces

- Coriolis effect leads to the direction of circulation around Highs and Lows.
 - Low circulation is counterclockwise (NH)
 - cyclonic
 - High circulation is clockwise (NH)
 - anticyclonic

Secondary Forces

- Friction
 - Most prevalent near surface
 - Upper level winds normally stronger than surface winds!
- General Weather Patterns
- Jet Stream
 - Upper level wind more than 55 mph.
Air Motion

• Learning Goals
 – Identify the forces involved in air motion.
 – Analyze some local winds and Earth’s general circulation pattern.
• Questions: 20 - 24

Clouds

• Buoyant masses of visible moisture
 – Water
 – Ice
• Cloud classification categories
 – Shape
 – Appearance
 – Altitude

Cloud Types - Cirrus
Cloud Types

- Cumulus

- Stratus

- Nimbus (Stratocumulus and Cumulonimbus)
Clouds

• Height
 – High
 – Middle
 – Low
 – Extensive Vertical Development
• The text (560 - 562) has explanations and additional photographs of common cloud types.

Clouds

• Cloud Formation
 – Condensation
 – Occurs at the dew point
• Cooling
 – Warm air mass contacts a cold air mass
 – Vertical movement
 • Formed by rising
 • Shaped by upper level winds

Clouds

• Vertical Formation
 – Warm air rises (unstable)
 – Cools
 – Reaches dew point
 – When temp of rising air equals surroundings, no more rise (stable)
 – Wind shapes the cloud
Clouds

• Learning Goals
 – Explain how clouds are described and classified.
 – Describe how clouds are formed.
• Questions: 25 – 28
• Key Terms; Matching, Multiple Choice, and Fill-in-the-Blank Questions; Visual Connection and Applying your Knowledge

General Physical Science

Chapter 19
The Atmosphere