Features of the Earth’s Moon

- Second-brightest object in the sky
- Average distance 240,000 mi
 - 380,000 km
 - Features can be seen with the unaided eye
- Fifth largest moon in solar system
- Very nearly spherical
 - Slightly oblate
 - Difference in diameter at equator vs poles 1.5 km

Features of the Earth’s Moon

- Slight asymmetry in the crust
 - Thicker on the ‘far’ side
- Mass \(\frac{1}{81} \) the mass of Earth
 - \(g \) is about \(\frac{1}{6} \) that of Earth
- No current magnetic field
 - May have been one in the past!

Craters

- Majority (99%) of craters are impact craters.
 - Other craters are volcanic.
 - Material around rim approximately equal to volume of crater

Basin

- Flattened interior of large craters
- South Pole / Aitkin Basin
 - Multi impact craters
 - 2500 km diameter,
 - 12 km depth at South Pole keeps in shadow
 - Hope to find water!
 - Schrodinger Basin
 - One of the most recent impact basins.
Plains
- Dark areas
 - Low albedo
 - Lava flows
- Regolith
 - Covers surface of the Moon
 - Loose debris
 - More on highlands
 - Older!

Rays
- Streaks of lighter material from craters
 - Powdered rock
 - Darkens with time
 - Areas that cross, lighter material is always on top

Lunar Features
- Rills
 - Long, narrow valleys caused by moonquakes.
- Mountain Ranges
 - Circular patterns surrounding the plains
 - Different formation process than earth
- Faults
 - Break in the surface
 - Several observed

Features of the Earth’s Moon
- Learning Goal:
 - Describe the general physical properties of the Moon.
- Questions:
 - 1 – 4
- Exercises:
 - 1

Lunar Motion Effects
- Revolves around the Earth in 29.5 days
- Rotational period is 29.5 days
 - Only see one side from Earth
 - No ‘Dark Side’ of the moon
 - David Gilmour is NOT a lunar expert!
 - Month with no full moon
 - Blue Moon – Second full moon in a month
- Sidereal month 27.3 days
 - Shorter for same reason sidereal day shorter than synodic day
- Orbital plane tilted relative to orbital plane of Earth around Sun

Phases of the Moon
- Reflected light
- Phase depends on the relative position of the Sun, Earth and Moon
- Moonrise a function of the phase of the moon
 - New moon parallels the sun
 - Full moon opposite
Phases of the Moon

- **New**
 - Only for an instant
- **Waxing Crescent**
 - Less than ½ of the side of the Moon visible from Earth is illuminated - increasing (right side as seen from Earth)
- **First Quarter**
 - Exactly ½ of the side of the Moon visible from Earth is illuminated (right side)
 - Only for an instant
- **Waxing Gibbous**
 - More than ½ but less than Full Moon (increasing - right)
- **Full Moon**
 - Only 'full' for an instant
- **Waning Gibbous**
 - More than ½ but less than Full Moon (decreasing - left)
- **Last Quarter**
 - Exactly ½ of the side of the Moon visible from Earth is illuminated (right side)
 - Only for an instant
- **Waning Crescent**
 - Less than ½ of the side of the Moon visible from Earth is illuminated – decreasing (left side as seen from Earth)

New Moon…

Eclipses

- Occurs when shadow is observed
 - **Solar eclipse**
 - Sun is blocked from Earth by the Moon
 - **Lunar Eclipse**
 - Sun is blocked from the Moon by the Earth

Solar Eclipse

- Occurs during new moon
- **Umbral**
 - Completely blocked from the Sun
 - 'Total Eclipse'
- **Penumbra**
 - Partial blockage
 - Much larger area
- Relative size of Moon and Sun (from Earth) very close!
Solar Eclipse

- Annular Eclipse
 - Occurs when umbra doesn’t reach the surface of the Earth
 - Moon doesn’t completely block out Sun, leaves a bright ring
 - Last total eclipse observed in OK was annular

Eclipses

- Do not occur every new moon because the orbit of the moon is tilted 5° to the ecliptic.
 - Points where orbit of the Moon crosses the ecliptic are called nodes.
 - Ascending and Descending

Eclipses

- Solar eclipse will only occur when node coincides with new moon.
- Lunar eclipse will only occur when node coincides with full moon.

Lunar Eclipse Progression

Ocean Tides

- Observed for centuries
- First related to the Moon in 1st century AD
 - Tides greatest when the Moon was directly overhead.
- Explained by Newton’s law of universal gravitation
 - Gravitational attraction of the Moon and Sun
 - Does NOT “suck water towards the Moon!”
Tidal Bulges

- Occurs because of differential gravitational attraction for different points on the Earth
- Water flows more easily than solid
 - Makes observation of the tidal bulges much easier
- Two high tides per day
 - Moon approx. over meridian and opposite meridian

Tides

- Spring tide
 - Moon's gravity is enhanced by being in a line with the sun
 - Results in a higher tide
- Neap tide
 - Sun is perpendicular to the position of the Moon
 - Tidal effect is slightly moderated

Tidal Forces

- Causes a decrease in the rate of the rotation of the Earth
 - 0.002 seconds per century
 - Decrease in angular momentum
- Conservation of energy
 - Must increase angular momentum for the Moon
 - Semimajor axis increasing by about 1.3 cm/yr
- 1 billion years ago, days were shorter (5.6 hr) and the Moon was closer (8,100 mi)
 - Eventually, will be only annular solar eclipses!

Lunar Motion Effects

- **Learning Goals:**
 - Define and explain the phases of the Moon
 - Describe and explain solar and lunar eclipses.
 - Define and describe tidal force.
 - Explain ocean tides.
- **Questions:** 5 – 16
- **Problems:** 3 – 13 odd
Asteroids, Meteoroids, Comets, and Interplanetary Dust

- Outer limit of the Solar System is considered to be about 100,000 AU
 - Point that the Sun's gravitational field balances the gravitational field of the Milky Way.
 - Objects influenced by the Sun's gravity:
 - Asteroids
 - Meteoroids
 - Comets
 - Dust...

Asteroids

- Minor Planet
- Largest is Ceres
- Only one can be seen w/o magnification
- Diameters from 940 km to just a few km
- Billions of smaller particles!
- Prograde rotation
- Believed to be material that didn’t coalesce into a planet.

Meteoroids

- Interplanetary junk.
 - Asteroids, comet material, ...
 - Sizes range from mm to km
- Meteor
 - Strikes Earth's atmosphere
 - 'Shooting Stars'
- Meteorite
 - Survives to the Earth's surface.

Meteorites

- Largest had a mass of more than 55,000 kg
- 3 types
 - Stones
 - 94% of all meteorites that strike the Earth
 - Similar in composition to rocks on Earth
 - Irons
 - Mostly iron with 5-20% nickel
 - Stony-Irons
 - Mix of both types

Comets

- 'Long-haired stars'
- Very elliptical orbits
- Mainly dust and ice
 - Silicate or metallic dust
 - H_2O, CO_2, NH_3, CH_4 ice
- Consists of 4 parts
Comet Parts
- **Nucleus**
 - Dust and ice core
 - Typically a few km
- **Coma**
 - Bright area around the nucleus
- **Tail**
 - Ions and dust
- **Hydrogen cloud**

Comets
- Visible by reflected sunlight
- Becomes more visible closer to the Sun
 - More reflected light
 - The coma and tail increase dramatically in size
 - Probably due to heating of the ice parts of the nucleus
- Tail always points away from the sun
 - Probably driven by the ‘solar wind’

Halley’s Comet

Interplanetary Dust
- Very small particles
- Micrometeoroids
- Can be seen under the right conditions
 - Zodiacal light
 - Band of reflected light at the ecliptic
 - Apparent path of the sun
 - Visible just before sunrise or after sunset
 - Gegenshein
 - Due to dust particles opposite the Sun’s position

Asteroids, Meteoroids, Comets, and Interplanetary Dust
- **Learning Goal:**
 - Describe asteroids, meteoroids, comets, and interplanetary dust.
- **Questions:** 28 - 33
- APPLICIBLE Key Terms; Matching, Multiple Choice, and Fill-in-the-Blank
 - Questions; Visual Connection and Applying your Knowledge