General Physical Science

Chapter 15
Place and Time

Space and Time

- Einstein
 - Space and time related
 - Single entity
 - Time is the 4th dimension!

Cartesian Coordinates

- Need some system to tell us where something is
- One – dimensional
 - Elevator
 - Number Line
Cartesian Coordinates

- Need two dimensional system
 - 2 number lines perpendicular to each other
 - X-axis is horizontal
 - Y-axis is vertical
 - Position relative to both number lines!

Cartesian Coordinates

- Named after Rene’ Descartes
- Use to locate any position on Earth
 - IF the earth was flat!
- Must ‘modify’ the system to account for a spherical shape.
 - Lines become circles

Cartesian Coordinates

- Learning Goal:
 - Explain the Cartesian coordinate system.
- Questions:
 - 1 - 3
Latitude and Longitude

- Modifies Cartesian coordinates for spherical shape of the Earth
- Latitude
 - Measurement of North and South displacement (Y-axis)
 - Use the poles to define top and bottom Points for axis of rotation
 - Series of concentric circles Rotational axis is the center of the circles

Latitude

- Diameter of circles will vary to a point at the poles!
 - Equator – 0°
 - North Pole - 90°N
 - South Pole - 90°S
- Also known as ‘parallels’
 - Infinite number!
 - Following a parallel will take you due East or West.

Meridians

- Measure of East and West displacement (X-axis)
- Half circles connecting the poles.
 - ½ of a ‘great circle’ Circle with center at the center of the Earth
 - Only parallel that is a great circle is the Equator
 - Perpendicular to parallels.
Meridians

- Measured in angular displacement from the Prime Meridian.
 - Meridian that passes through Greenwich, England.
- Prime meridian is defined as 0°.
 - Meridian that ‘completes’ the circle is 180°.
 - All others are measured as degrees east or west of the Prime Meridian

Meridians and Parallels

Latitude and Longitude

- Meridians run exactly North and South
- US – Latitude is N; Longitude is W
 - Lawton is 34.57°N; 98.42°W
- Also express as Degrees/Minutes/Seconds
 - 1 degree = 60 minutes; 1 minute = 60 seconds
 - Lawton is 34° 34’ 4” N; 98° 25’ 0” W
Great Circle

- Shortest distance between 2 points on a sphere.
 - 1 minute of arc = 1 nautical mile (nm)
 - 1 nm = 1.15 statute miles
 - Change in 1 minute on meridian is 1 nm
 - Change in 1° N or S is 60 nm
 - NOT TRUE for parallels
 - Show great circle path by stretching a string on a globe
 - Shows why flights to Tokyo from Los Angeles go near Anchorage

Determine the number of nautical miles between A (10°S, 90°W) and B (70°N, 90°E)

- All points are on the same great circle formed by the 90°W, 90°E meridians
- Total displacement
 - 10°S to equator = 10°
 - 0° to 90°N (on 90°W meridian) = 90°
 - 90°N to 70°N (on 90°E meridian) = 20°
 - 10° + 90° + 20° = 120°
 - 120° × 60 nm/degree = 7,200 nm
 - BOOK EXAMPLE WRONG!!

Mercator

- Mapmaker
 - Still most common projection of a spherical surface on a 2 dimensional surface!
 - Defined an atlas as a collection of maps.
 - Map is a diagram that shows the relative position of objects on the surface of the Earth
 - Frame of reference for maps is Lat/Lon
Global Positioning System

- Based on measurement of time
 - Time it takes for a signal to get from a satellite to the receiver
 - 24 satellites currently make up the GPS 'constellation'
 - Not all visible at any time

Global Positioning System

- Position of satellites known very accurately
- Time delay is due to distance
 - Signal travels at the speed of light
- To determine position we need signal from at least 3 satellites
 - For altitude we need at least 4
Latitude and Longitude

- **Learning Goals:**
 - Define and explain *latitude* and *longitude*.
 - Solve latitude and longitude exercises relative to the surface of the Earth.
 - Describe how the Global Positioning System functions.
- **Questions:** 8 – 18
- **Problems:** 1 – 7 odd

Time

- Continuous forward flowing of events
- Base unit for time is the second
 - Interval for an isotope of cesium (133Cs) to vibrate 9,192,631,770 times.
- All other time units based on the second
 - Minutes, hours, days…

Solar Day

- Elapsed time between successive apparent crossings of the same meridian.
 - Function of rotation and revolution
 - NOT CONSTANT! Orbital speed varies.
- **Mean Solar Day**
 - Average of all solar days in a year
Solar Day

- Different than sidereal day
 - Time for star other than sun to cross specified meridian
- For a solar day, Earth must rotate more than 360°.

Local Solar Noon

- Sun exactly over the local meridian
 - No east or west displacement in the position of the Sun.
 - AM (ante meridian)
 - Before the meridian
 - PM (post meridian)
 - Beyond the meridian
- Either 12 noon or 12 midnight
 - NOT 12 am or 12 pm!

Standard Time Zones
Standard Time Zones

- 24 time zones
 - Centers theoretically 15° apart
 - Some adjustments for local political reasons
 - Lawton would be in the Mountain time zone with a strict interpretation!

- First time zone at Prime Meridian
 - Greenwich Mean Time (GMT)
 - Now UTC
 - Synchronized to Atomic Clocks

International Date Line

- Needed to keep days constant for long distance travelers.
 - Leave LAW on the Concorde at local Solar noon
 - Travel west with the sun always above your meridian
 - On landing, no 'day' has passed for you
 - Define change of day at 180°
 - International Date Line (some political changes)
 - Ahead 1 day when traveling to the West
 - Back 1 day when traveling to the East

International Date Line

- Needed to keep days constant for long distance travelers.
 - Leave LAW on the Concorde at local Solar noon
 - Travel west with the sun always above your meridian
 - On landing, no 'day' has passed for you
 - Define change of day at 180°
 - International Date Line (some political changes)
 - Ahead 1 day when traveling to the West
 - Back 1 day when traveling to the East
Daylight Savings Time

- First used in WWI to conserve fuel used to generate electricity
 - Still standard practice for most states in the US
- 2 a.m. second Sunday in March to 2 a.m first Sunday in November.
 - NOT universal
 - Different countries have different time frames

Time

- Learning Goals:
 - Interpret the concept of time
 - Explain the necessity for time zones and the International Date Line.
- Questions: 11 – 18
- Problems: 9 – 15 odd

Determining Latitude and Longitude

- Interesting stuff, but we can skip it!
Seasons and the Calendar

- Start of seasons defined by Sun’s apparent position
 - Changes due to the tilt of the Earth
- Solstice
 - Summer – Sun perpendicular to 23.5°N
 - Tropic of Cancer (Northern Hemisphere)
 - June 21 or 22
 - Winter – Sun perpendicular to 23.5°S
 - Tropic of Capricorn (Southern Hemisphere)
 - December 22 or 23

The Seasons

- Winter solstice is the ‘official’ start of winter, and summer solstice is the ‘official’ start of summer.
- Equinox
 - Sun is perpendicular to equator
 - Vernal – Spring (March 20 or 21)
 - Autumnal – Fall (September 22 or 23)
Daylight Hours

- Equinox – All areas of Earth get 12 hours of sunlight.
- Because of the tilt of the Earth, in the summer days are longer than 12 hours.
 * Combined with more direct contact of sunlight, summers are warm/hot!
- Winter days – less than 12 hours.
 * Also less direct sunlight – colder!

Distribution of Daylight

Year

- Tropical Year
 * Time from one vernal equinox to the following vernal equinox
 * 365.2422 days
- Sidereal Year
 * One revolution around the sun with respect to any star other than the Sun
 * 365.2536 days
The Calendar

- **Day**
 - Defined by sun cycle
- **Month**
 - Defined by lunar cycle
- **Year**
 - Defined by seasonal cycle
- **Zodiac**
 - Based on 12 constellations
 - Appearance in night sky marked different times of year
 - Precession caused slow change in time of appearance!

The Calendar

- **Moon probably greatest influence**
 - Babylonians
 - Prior to 3000 BC
 - 30 days per month
 - Would periodically add another month when needed!
- **Week**
 - Probably time for moon to go from one phase to the next
- **BC and AD**
 - New terminology BCE and CE
 - Same time frame as BC and AD

The Calendar

- **Questions: 22 – 29**
Precession of the Earth’s Axis

- Wobble
 - Top
- Center of gravity not exactly in line with the axis of rotation
- Occurs with Earth!

Questions: 30 – 32

Key Terms; Matching, Multiple Choice, and Fill-in-the-Blank Questions; Visual Connection and Applying your Knowledge