Chemical and Physical Properties

- Physical properties
 - Observations about a substance
 - changes that do not involve a change in the arrangement of the atoms in the substance.
 - Density
 - Hardness
 - Melting and boiling point

- Chemical Properties
 - Atomic rearrangement to make new substance(s).
 - Burning wood (combustion)
 - Iron rusting (oxidation - reduction)
 - Gunpowder exploding
Chemical Equations

- Consider the reaction $A + B \rightarrow C + D$
 - A, B are reactants
 - amount of A and B decreases as the reaction progresses.
 - C, D are products
 - amount of C and D increases as the reaction progresses.
 - $$\rightarrow$$ similar to equal sign in mathematical equation.

Formation of Water

Balancing Chemical Equations

- Balancing chemical equations involve the rearrangement of atoms.
- Must insure the same number of each type of atom appears on each side of the equation.
- Can ONLY manipulate coefficients in front of the atom/molecule.
Balancing Chemical Equations

- Final values for these molecular/atomic coefficients.
- Must be whole numbers, not fractions.
- Cannot have a fractional amount of a molecule or a part of an atom!
- Should represent the smallest whole number ratio that is possible.

Balancing Chemical Equations

- Tips
 - You **must** be able to count atoms!
 - For $4\text{Al}(\text{SO}_4)_3$
 - 8 Al, 12 S, 48 O
 - Start with an element in only one place on each side of the equation.
 - Finish with any substance in elemental form.
 - Balance polyatomic ions as a unit.
 - Put in fractions; then multiply to eliminate.

Symbols in Chemical Equations

<table>
<thead>
<tr>
<th>Table 13.2: Common Symbols in Chemical Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>+</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>(g)</td>
</tr>
<tr>
<td>(l)</td>
</tr>
<tr>
<td>(s)</td>
</tr>
<tr>
<td>(aq)</td>
</tr>
<tr>
<td>NH₂O₂</td>
</tr>
<tr>
<td>⇋</td>
</tr>
</tbody>
</table>
Balancing Chemical Equations

- **Examples**
 - \(\text{H}_2 + \text{O}_2 \rightarrow \text{H}_2\text{O} \)
 - \(\text{KClO}_3 \rightarrow \text{KCl} + \text{O}_2 \)
 - \(\text{Mg} + \text{O}_2 \rightarrow \text{MgO} \)
 - \(\text{C}_2\text{H}_4 + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} \)

- **Types of Reactions**
 - Combination
 - Decomposition
 - Combustion

Combination and Decomposition Reactions

- **Combination Reaction**
 - Rapid exothermic reaction with oxygen.
 - Hydrocarbons
 - Compounds containing only carbon and hydrogen
 - Gasoline, natural gas, oils
 - Product of combustion reaction with hydrocarbons is \(\text{CO}_2 + \text{H}_2\text{O} \)
 - Reactions are all exothermic.
Balancing Chemical Equations

- Learning Goals
 - Distinguish between chemical and physical changes
 - Balance chemical equations
 - Identify combination, decomposition, and hydrocarbon combustion reactions
- Questions: 2 - 10
- Exercises: 1 - 5 odd

Energy and Reaction Rates

- All reactions include a change in energy.
 - Exothermic - Energy is released.
 - Endothermic - Energy is absorbed.
- Activation Energy
 - Energy required to start a reaction.
 - Car pushed up over a small hill to coast to the bottom of a large hill

Exothermic Process
Endothermic Reaction

For a reaction to occur, molecules/atoms must collide with sufficient energy in the proper orientation.

Increase in temperature increases the rate of a reaction
- increased temp increases the average kinetic energy of the molecules
- leads to more ‘effective’ collisions
Reaction Rates

- Reaction rates usually increase with an increase in the concentration of the reactant(s).
 - More chances for a collision.
- Rate increases with increase in surface area.
 - Grain elevator explosions.

Reaction Rates

- Catalysts
 - Increase the rate of a reaction without being permanently changed.
 - Catalytic converter on car.
 - Works by lowering the activation energy.
 - Go around the small hill rather than over.
- Enzymes
 - Biochemical catalysts

Energetics of Catalysts
Energy and Reaction Rates

- Learning Goals
 - Describe the role of energy in chemical reactions.
 - State the factors that affect the rate of a reaction.
- Questions: 11 - 20
- Exercise: 7

Acids and Bases

- Acids
 - Conduct electricity
 - Change litmus from blue to red
 - Sour
 - Neutralize properties of a base
 - Reacts with active metals to produce H₂
- Bases
 - Conduct electricity
 - Change litmus from red to blue
 - Bitter

Chemical Equilibrium

- Consider the reaction A + B → C + D
 - A, B are reactants
 - Amount of A and B decreases as the reaction progresses.
 - C, D are products
 - Amount of C and D increases as the reaction progresses.
Chemical Equilibrium

- Consider \(C + D \rightarrow A + B \)
 - Reverse of previous process
 - If both reactions occur (to a significant extent) we have a ‘reversible’ reaction.
 - Written \(A + B \leftrightarrow C + D \)
 - the double arrow (\(\leftrightarrow \)) indicates the reversible reaction
 - Every reaction is somewhat reversible; double arrow indicates significant amounts of all products and reactants at equilibrium.

Chemical Equilibrium

- Occurs when the rate of the forward process is equal to the rate of the reverse process.
 - Consider \(A + B \rightarrow C + D \)
 - At equilibrium, for every set of \(A \) and \(B \) molecules that reacts to form a set of \(C \) and \(D \) molecules, another set of \(C \) and \(D \) molecules reacts to form a set of \(A \) and \(B \) molecules.

Arrhenius

- Acid - reacts in water to give \(H^+ \) ions.
 - Strong acid - all molecules react (\(\text{HCl}_{aq} \))
 - Weak acid - only some react (\(\text{HC}_2\text{H}_3\text{O}_2 \))
 - Equilibrium process
 - Many industrial/food uses
- Base - reacts in water to give \(\text{OH}^- \) ions.
 - Strong base - soluble hydroxides
 - Weak base - molecules containing \(N \)
 - Also an equilibrium process
pH scale
- Measure of concentration of H^+
 - logarithmic scale
 - Several common pH values shown below

Acid / Base Reaction
- $HCl + NaOH \rightarrow H_2O + NaCl$
 - Products are water and a 'salt'
 - salt is a generic term for an ionic compound.
 - Any cation except H^+
 - Any anion except OH

Salts
- Salts may be hydrated or anhydrous
 - $Cu(SO_4)(H_2O)_6$ - hydrated salt (Blue)
 - $CuSO_4$ - anhydrous - white
Carbonates

- Carbonates are salts containing CO_3^{2-}
- Products of acidic reaction with carbonates:
 - H_2O
 - salt
 - CO_2
- Baking soda
 - reaction with NaHCO_3 causes CO_2 to form.
 - products 'rise'

Double Replacement Reaction

- $\text{AB} + \text{CD} \rightarrow \text{AD} + \text{CB}$

 Precipitate
 - insoluble solid
 - typically insoluble salt
 - Soluble salts
 - Nitrate, acetate, ammonium, alkali metal ions.

Acids and Bases

- Learning Goals
 - Describe the properties of acids and bases.
 - Write chemical reactions for double replacement reactions.
- Questions: 21 - 31
- Exercises: 9, 11
Single Replacement Reactions

- Species reacts with oxygen.
 - Oxidation
 - Now defined as reaction when electron(s) are lost.
- Reacts to remove oxygen - reduction
 - $2 \text{Fe}_2\text{O}_3 + 3\text{C} \rightarrow 4\text{Fe} + 3\text{CO}_2$
 - Iron is reduced
 - Carbon is oxidized
 - Reduction = gain of electrons

Oxidation-Reduction Reactions

- Redox for short
 - Cannot have oxidation without reduction.
 - Do not need oxygen at all!
 - $2\text{Na} + \text{Cl}_2 \rightarrow 2\text{NaCl}$
 - Na is oxidized
 - Cl$_2$ is reduced
 - No oxygen required!
- Most combination/decomposition reactions are redox reactions.

Single Replacement Reaction

Zinc metal + Copper(II) sulfate \rightarrow Copper metal + Zinc sulfate
Activity Series

- Used to predict whether a single replacement reaction will occur.
 - $A + BC \rightarrow AC + B$
 - If A is above B then reaction will occur.
 - Metals above H will produce H_2
 - Table 13.5

Single Replacement Reactions

- Reaction types summarized in Table 13.6
- Learning Goals:
 - Define the terms oxidation and reduction.
 - Write equations for single replacement reactions.
- Questions: 32 - 35
- Exercises: 13, 15

Avagadro’s Number

- Number of ‘things’ in one mole
 - Atoms
 - Molecules
 - Electrons...
 - 6.022×10^{23}
- Allows atomic mass in amu to correlate to molar mass in g
Avagadro’s Number

- For the reaction Na⁺ + e⁻ → Na
 - 96,485 C of charge to make 23.0 g (1 mole) of sodium
 - Charge on one electron = 1.6022 × 10⁻¹⁹ C
 - 2 mole e⁻ = 1 mole Na
 - (96,485 C)/(1.6022 × 10⁻¹⁹ C/electron)
 - = 6.022 × 10²³ electrons

Molarity

- Ratio of reacting particles present to volume of solution
 - Moles / liters (moles per liter)
 - Symbol is M
- Since reactions based on number of molecules, this is a convenient measurement for concentration!

Example

- What is the molarity of sucrose when 0.400 mol of the sugar is dissolved to give 1.80 L of solution?
 - Moles of solute: 0.400
 - Liters of solution: 1.80 L
 - Molarity = 0.400 mol / 1.80 L
 - Molarity = 0.222 M
Avagadro’s Number

- Learning Goal
 - State the relationship among mole, mass, and Avagadro’s number.
 - Explain the concept of molarity.
- Questions: 36, 37
- Exercises: 17 – 21
- Key Terms; Matching, Multiple Choice, and Fill-in-the-Blank Questions; Visual Connection and Applying your Knowledge

General Physical Science

Chapter 13
Chemical Reactions