Early Concepts of the Atom

Leucippus and Democritus (400 BC)
- All matter could only be subdivided so far
- Eventually have an indivisible particle
- Atomos (indivisible) becomes atom
- ‘Thought experiment’
 - No testing

John Dalton
- First evidence that matter is made up of discrete particles.
- Each chemical element is made up of indivisible particles called atoms, which are identical for that element but differ from the atoms of other elements.
- ‘Billiard Ball’ model
Early Concepts of the Atom

- J.J. Thomson
 - discovered electrons
 - CRT
 - Deflected by electric/magnetic fields
 - All electrons were determined to be identical.
 - Not dependent on material that the cathode was made from.
 - Number of electrons in an atom is equal to the atomic number.

Early Concepts of the Atom

- Led to the ‘plum pudding’ model
- Ernest Rutherford – 8 years later!
 - Gold foil experiment
 - Particles were knocked backwards!
 - Proposed the ‘nuclear’ atom
 - 99.9% of mass of the atom is contained in a small core called the nucleus.
 - If an atom was the size of the Astrodome, the nucleus would be about the size of a housefly!

Early Concepts of the Atom

- Learning Goal
 - Describe the atomic models of Dalton, Thomson, and Rutherford
- Questions: 1-3
The Dual Nature of Light

- Visible light of all frequencies is emitted from hot objects
 - ‘Black Body’ radiation
- Classical theory predicts that the intensity of the light should increase rapidly with an increase in the frequency of light.
- Not what happens!

The Dual Nature of Light

- Resolved by Max Planck
 - Energy is ‘quantized’
 - Starsteps
 - \(E = hf \)
 - Planck’s Constant (\(h \))
 - \(h = 6.626 \times 10^{-34} \) J s

The Photoelectric Effect

- Some metals will eject an electron when struck by light.
 - Time to eject an electron almost instantaneous
 - Too short according to classical theory
 - Requires ‘filling’ of energy bucket
 - Certain wavelengths do not eject, no matter how long you shine the light on them.
 - Bucket ‘should’ fill even if flow is slower
The Photoelectric Effect

- Einstein
 - Proposed light exists as ‘quanta’
 - Packets of energy
 - ‘Photons’
 - $E = hf$
 - E is the energy of this photon!

Example

- Find the energy in Joules of the photons of red light of frequency 5.00×10^{14} Hz.
- What do we know?
 - $E = hf$
 - $f = 5.00 \times 10^{14}$ s$^{-1}$
 - $h = 6.626 \times 10^{-34}$ Js
 - $E = (5.00 \times 10^{14})/(6.626 \times 10^{-34}) \text{ J}$
 - $E = 3.32 \times 10^{-19}$ J

The Dual Nature of Light

- Chapter 6
 - Light is a wave
- Chapter 9
 - Light is a particle
- ‘Sometimes you feel like a nut; sometimes you don’t!’
 - Travels as a wave
 - Interacts with matter as a particle!
The Dual Nature of Light

- Learning Goals
 - State Planck’s hypothesis and apply the equation for it.
 - Describe and explain the photoelectric effect.
 - Explain the meaning of the dual nature of light.
- Questions: 4-11
- Problems 1, 3

Bohr Theory of the Hydrogen Atom

- Light from an incandescent bulb analyzed we have a continuous set of wavelengths.

Bohr Theory of the Hydrogen Atom

- Light from a gas-discharge tube gives a series of bright lines
 - Line emission spectrum
Bohr Theory of the Hydrogen Atom

- Light of all wavelengths passed through a cool gas, loses some of the lines.
 - Correspond with emission lines

Bohr Atom

- Electrons in ‘quantized’ orbits
- Lines correspond with the energy to move from one orbit to another.
 - Emission spectra - lines from electrons falling from an excited state to a ground state.
 - Absorption spectra - light absorbed to cause electron to go from a ground state to an excited state.
Atomic Size

- Size of an atom depends on the ‘state’ of the electron
- **Ground State**
 - ‘natural’ state
 - \(n = 1 \)
- **Excited State**
 - Requires input of energy
 - \(n > 1 \)
 - \(r_n = 0.053nm \times n^2 \)

Example

- Calculate the size of a hydrogen atom when \(n = 1 \) and when \(n = 2 \)
- **When \(n = 1 \)**
 - \(0.053 \times 1^2 = 0.053 \text{ nm} \)
- **When \(n = 2 \)**
 - \(0.053 \text{ nm} \times 2^2 = 0.21 \text{ nm} \)

Bohr Atom
Electron Energies

- Orbit also determines energy of an electron
 - ‘Free electron’ has zero energy
 - Electrons closer to the nucleus have less energy than a free electron
 - Electron energies in orbits are therefore negative!
- \[E_n = \left(-\frac{13.60}{n^2}\right) \text{ eV} \]

Example

- Determine the energy of an electron in the first and second orbits of a hydrogen atom
- For \(n = 1 \)
 - Energy = \(-13.60 / 1^2 = -13.60 \text{ eV} \)
- For \(n = 2 \)
 - Energy = \(-13.60 / 2^2 = -3.40 \text{ eV} \)

Emission and Absorption of Photons

- Photon Emission
- Photon Absorption
Electron Energies

- Conservation of Energy
 \[E_{\text{photon}} = E_{ni} - E_{nf} \]
- Calculate the energy of the photon emitted when an electron falls from \(n = 2 \) to \(n = 1 \) orbit:
 - From previous Example Problem
 - \(n = 2; E = -3.40 \text{ eV} \)
 - \(n = 1; E = -13.60 \text{ eV} \)
 - \(E_{\text{photon}} = 3.40 - (-13.6) = 10.20 \text{ eV} \)

Hydrogen Line Spectra

- Balmer Series
 - Electrons fall from \(n > 2 \) to \(n=2 \)
 - These are the visible lines we saw in the hydrogen spectrum.
- Lyman Series
 - Electrons from \(n > 1 \) to \(n = 1 \)
 - UV
- Paschen Series
 - Electrons from \(n > 3 \) to \(n = 3 \)
 - Infrared
- Predicted by Bohr!
Bohr Theory of the Hydrogen Atom

- Learning Goals
 - Describe Bohr’s model of the hydrogen atom.
 - Explain the formation of line spectra.
- Questions: 12 – 21
- Problems: 5, 7, 9

Applications

- Spectroscopy
 - Study of interaction of light and matter
- Microwave Ovens
 - Quantized rotational / vibrational modes for water
 - Microwaves excite water molecules
 - De-excitation releases heat
 - Surface phenomenon
 - Must let sit for conductive heat transfer

Applications

- X-Rays
 - High energy electromagnetic radiation
 - Emitted by exciting ‘internal’ electrons
 - Interacts with "dense" material while ‘soft tissue’ is transparent
Applications

- Lasers
 - Light Amplification by Stimulated Emission of Radiation
 - Must get ‘metastable state’
 - Population inversion
 - More electrons in an excited state than a ground state
 - Spontaneous emission leads to stimulated emission!

Lasers

- Monochromatic Radiation
 - All light is of the same wavelength
 - Stimulated emission can only be the same energy as spontaneous emission!
 - ‘Coherent’ radiation
 - Light bulb ‘incoherent’
 - Short ‘wavelets’ with mix of phase relationships
 - Stimulated emission coherent
 - Same phase relationship and direction
 - More explanation in Chapter 7!
Applications of Lasers

- Distance measurement
 - Moon orbit
 - Tectonic plate movement
- Communication
 - Optical fibers
 - CD / DVD readers
- Surgery
 - ‘Traditional’ and eye surgeries
- Many other applications!

Learning Goals
- Describe and explain the operation of a microwave oven
- Tell how x-rays are produced, and explain their spectra
- Explain how laser light is produced.
- Questions: 22 - 26

Heisenberg's Uncertainty Principle
- Classical Mechanics
 - Measurements can be refined indefinitely with more reliable tools
- Quantum Mechanics
 - At a point, the measuring device changes the substance being measured!
 - Cannot measure 0K
 - Measuring device transfers heat to the system to cause the temp to be greater than 0K!
Heisenberg's Uncertainty Principle

- IT IS IMPOSSIBLE TO KNOW A PARTICLE’S EXACT POSITION AND VELOCITY SIMULTANEOUSLY!
 - Not very noticeable for very massive object.
 - Very important for electrons
 - $m \left(\Delta v \right) \left(\Delta x \right)$ is very close to Planck’s constant

Heisenberg’s Uncertainty Principle

- Learning Goal
 - Explain the significance of Heisenberg’s Uncertainty Principle.
- Questions: 27, 28

Matter Waves

- de Broglie
 - Hypothesized matter has wave/particle duality
 - wavelength = h / mv
 - h = Planck’s constant (6.63×10^{-34} J s)
 - m = mass in kg
 - v = speed of the object
 - Only significant wavelengths for very light objects (electrons)
Matter Waves

- Confirmed experimentally in 1927
- Allows viewing of objects that would be impossible to resolve using visible light.

Matter Waves

- Learning Goal
 - Explain the term dual nature of matter.
- Questions: 29 – 32
- Problem: 11

The Electron Cloud Model of the Atom

- Bohr
 - Studied hydrogen because it is the simplest element
 - only one electron
- Multi-electron elements the mathematical model breaks down!
- Wave Mechanics.
The Electron Cloud Model of the Atom

- Erwin Schrodinger
 - Derived the ‘quantum mechanical’ model for the atom
 - Based on wave mechanics
 - Electrons exist somewhere in electron clouds.
 - Orbitals
 - Probability functions for the electrons
 - Three dimensional areas
 - Uncertainty (Heisenberg)

Wave Functions

- Helps to explain why an electron stays out of the nucleus
 - Wave function would collapse!

The Electron Cloud Model of the Atom

- Calculate ‘most probable radius’ for hydrogen
- Matches ‘Bohr radius’ for the atom
 - All energy levels match!
- Helps to explain multi-electron atoms also.
 - Doesn’t have as pretty of a picture as the ‘traditional’ picture of the atom
The Electron Cloud Model of the Atom

- Learning Goal
 - Describe the quantum mechanical model of the atom.
- Questions: 30, 31